tensorflow的ckpt文件总结】的更多相关文章

1.TensorFlow的模型文件 --checkpoint_dir | |--checkpoint | |--MyModel.meta | |--MyModel.data-00000-of-00001 | |--MyModel.index 2.meta文件 该文件保存的是图结构,meta文件是pb格式,包含变量.结合.OP 3.ckpt文件 二进制文件,存储了weights,biases,gradients等变量 4.checkpoint文件 文本文件,该文件记录了保存的最新的checkpoi…
TensorFlow 模型保存与恢复 一个快速完整的教程,以保存和恢复Tensorflow模型. 在本教程中,我将会解释: TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如何恢复预测/转移学习的TensorFlow模型? 如何使用导入的预先训练的模型进行微调和修改? 这个教程假设你已经对神经网络有了一定的了解.如果不了解的话请查阅相关资料. 1. 什么是TensorFlow模型? 训练了一个神经网络之后,我们希望保存它以便将来使用.那么什么是TensorFlow模型?…
转载自:https://blog.csdn.net/huachao1001/article/details/78501928 使用tensorflow过程中,训练结束后我们需要用到模型文件.有时候,我们可能也需要用到别人训练好的模型,并在这个基础上再次训练.这时候我们需要掌握如何操作这些模型数据. 1 Tensorflow模型文件 我们在checkpoint_dir目录下保存的文件结构如下: |--checkpoint_dir | |--checkpoint | |--MyModel.meta…
1.tensorflow的模型文件ckpt参数获取 import tensoflow as tf from tensorflow.python import pywrap_tensorflow model_dir = "./ckpt/" ckpt = tf.train.get_checkpoint_state(model_dir) ckpt_path = ckpt.model_checkpoint_path reader = pywrap_tensorflow.NewCheckpoin…
由于项目需要,需要将TensorFlow保存的模型从ckpt文件转换为pb文件. import os from tensorflow.python import pywrap_tensorflow from net2use import inception_resnet_v2_small#这里使用自己定义的模型函数即可 import tensorflow as tf if __name__=='__main__': pb_file = "./model/output.pb" ckpt_…
查看tensorflow pb模型文件的节点信息: import tensorflow as tf with tf.Session() as sess: with open('./quantized_model.pb', 'rb') as f: graph_def = tf.GraphDef() graph_def.ParseFromString(f.read()) print graph_def 效果: # ... node { name: "FullyConnected/BiasAdd&qu…
.ckpt文件是旧版本的输出saver.save(sess),相当于现在的.ckpt-data checkpoint文件仅用于告知某些TF函数,这是最新的检查点文件. .ckpt-meta 包含元图,即计算图的结构,没有变量的值(基本上可以在tensorboard / graph中看到).saver = tf.train.import_meta_graph(path_to_ckpt_meta) saver.restore(sess, path_to_ckpt_data) .ckpt-index是…
TensorFlow csv读取文件数据(代码实现) 大多数人了解 Pandas 及其在处理大数据文件方面的实用性.TensorFlow 提供了读取这种文件的方法. 前面章节中,介绍了如何在 TensorFlow 中读取文件,本文将重点介绍如何从 CSV 文件中读取数据并在训练之前对数据进行预处理. 将采用哈里森和鲁宾菲尔德于 1978 年收集的波士顿房价数据集(http://lib.stat.cmu.edu/datasets/boston),该数据集包括 506 个样本场景,每个房屋含 14…
import tensorflow as tf v1 = tf.Variable(tf.random_normal([1], stddev=1, seed=1)) v2 = tf.Variable(tf.random_normal([1], stddev=1, seed=1)) result = v1 + v2 init_op = tf.global_variables_initializer() saver = tf.train.Saver() with tf.Session() as ses…
p.p1 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px ".PingFang SC"; color: #454545 } p.p2 { margin: 0.0px 0.0px 0.0px 0.0px; font: 12.0px "Helvetica Neue"; color: #454545; min-height: 14.0px } p.p3 { margin: 0.0px 0.0px 0.0px 0.0px; f…