[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 1 什么是eager模式 2 TF1.0 vs TF2.0 3 获取导数/梯度 4 获取高阶导数 之前讲解了如何构建数据集,如何创建TFREC文件,如何构建模型,如何存储模型.这一篇文章主要讲解,TF2中提出的一个eager模式,这个模式大大简化了TF的复杂程度. 1 什么是…
[新闻]:机器学习炼丹术的粉丝的人工智能交流群已经建立,目前有目标检测.医学图像.时间序列等多个目标为技术学习的分群和水群唠嗑的总群,欢迎大家加炼丹兄为好友,加入炼丹协会.微信:cyx645016617. 参考目录: 目录 0 为什么学TF 1 Tensorflow的安装 2 数据集构建 2 预处理 3 构建模型 4 优化器 5 训练与预测 0 为什么学TF 之前的15节课的pytorch的学习,应该是让不少朋友对PyTorch有了一个全面而深刻的认识了吧 (如果你认真跑代码了并且认真看文章了的…
文章来自微信公众号[机器学习炼丹术].有什么问题都可以咨询作者WX:cyx645016617.想交个朋友占一个好友位也是可以的~好友位快满了不过. 参考目录: 目录 1 探索性数据分析 1.1 数据集基本信息 1.2 数据集可视化 1.3 类别是否均衡 2 训练与推理 2.1 构建dataset 2.2 构建模型类 2.3 训练模型 2.4 推理预测 在这个文章中,主要是来做一下MNIST手写数字集的分类任务.这是一个基础的.经典的分类任务.建议大家一定要跟着代码做一做,源码已经上传到公众号.…
文章来自微信公众号[机器学习炼丹术]. 上一节课,讲解了MNIST图像分类的一个小实战,现在我们继续深入学习一下pytorch的一些有的没的的小知识来作为只是储备. 参考目录: @ 目录 1 pytorch数据结构 1.1 默认整数与浮点数 1.2 dtype修改变量类型 1.3 变量类型有哪些 1.4 数据类型转换 2 torch vs numpy 2.1 两者转换 2.2 两者区别 3 张量 3.1 张量修改尺寸 3.2 张量内存存储结构 3.3 存储区 3.4 头信息区 1 pytorch…
文章来自:微信公众号[机器学习炼丹术].一个ai专业研究生的个人学习分享公众号 文章目录: 目录 torchvision 1 torchvision.datssets 2 torchvision.models 模型比较 torchvision 官网上的介绍(翻墙):The torchvision package consists of popular datasets, model architectures, and common image transformations for compu…
参考目录: 目录 1 矩阵与标量 2 哈达玛积 3 矩阵乘法 4 幂与开方 5 对数运算 6 近似值运算 7 剪裁运算 这一课主要是讲解PyTorch中的一些运算,加减乘除这些,当然还有矩阵的乘法这些.这一课内容不多,作为一个知识储备.在后续的内容中,有用PyTorch来获取EfficientNet预训练模型以及一个猫狗给分类的实战任务教学. 加减乘除就不多说了,+-*/ 1 矩阵与标量 这个是矩阵(张量)每一个元素与标量进行操作. import torch a = torch.tensor([…
文章来自微信公众号[机器学习炼丹术].我是炼丹兄,欢迎加我微信好友交流学习:cyx645016617. @ 目录 1 背景 2 深度可分离卷积 2.2 一般卷积计算量 2.2 深度可分离卷积计算量 2.3 网络结构 3 PyTorch实现 本来计划是想在今天讲EfficientNet PyTorch的,但是发现EfficientNet是依赖于SENet和MobileNet两个网络结构,所以本着本系列是给"小白"初学者学习的,所以这一课先讲解MobileNet,然后下一课讲解SENet,…
[机器学习炼丹术]的炼丹总群已经快满了,要加入的快联系炼丹兄WX:cyx645016617 参考目录: 目录 1 创建自定义网络层 2 创建一个完整的CNN 2.1 keras.Model vs keras.layers.Layer 之前讲过了如何用tensorflow构建数据集,然后这一节课讲解如何用Tensorflow2.0来创建模型. TF2.0中创建模型的API基本上都放到了它的Keras中了,Keras可以理解为TF的高级API,里面封装了很多的常见网络层.常见损失函数等. 后续会详细…
文章来自公众号[机器学习炼丹术],回复"炼丹"即可获得海量学习资料哦! 目录 1 动态图的初步推导 2 动态图的叶子节点 3. grad_fn 4 静态图 本章节缕一缕PyTorch的动态图机制与Tensorflow的静态图机制(最新版的TF也支持动态图了似乎). 1 动态图的初步推导 计算图是用来描述运算的有向无环图 计算图有两个主要元素:结点(Node)和边(Edge): 结点表示数据 ,如向量.矩阵.张量; 边表示运算 ,如加减乘除卷积等: 上图是用计算图表示: \(y=(x+w…
文章目录: 目录 1 任务 2 实现思路 3 实现过程 3.1 引入必要库 3.2 创建训练集 3.3 搭建网络 3.4 设置优化器 3.5 训练网络 3.6 测试 1 任务 首先说下我们要搭建的网络要完成的学习任务: 让我们的神经网络学会逻辑异或运算,异或运算也就是俗称的"相同取0,不同取1" .再把我们的需求说的简单一点,也就是我们需要搭建这样一个神经网络,让我们在输入(1,1)时输出0,输入(1,0)时输出1(相同取0,不同取1),以此类推. 2 实现思路 因为我们的需求需要有两…