python机器学习实现线性回归】的更多相关文章

import numpy as np import matplotlib.pyplot as plt from sklearn import datasets, linear_model,svm from sklearn.model_selection import train_test_split def load_data_regression(): ''' 加载用于回归问题的数据集 ''' diabetes = datasets.load_diabetes() #使用 scikit-lea…
线性回归 关注公众号"轻松学编程"了解更多. [关键词]最小二乘法,线性 一.普通线性回归 1.原理 分类的目标变量是标称型数据,而回归将会对连续型的数据做出预测. 应当怎样从一大堆数据里求出回归方程呢? 假定输人数据存放在矩阵X中,而回归系数存放在向量W中.那么对于给定的数据X1, 预测结果将会通过 Y=X*W 给出.现在的问题是,手里有一些X和对应的Y,怎样才能找到W呢? 一个常用的方法就是找出使误差最小的W.这里的误差是指预测Y值和真实Y值之间的差值,使用该误差的简单累加将使得正…
本文转载自:https://juejin.im/post/5a924df16fb9a0634514d6e1 机器学习之线性回归(纯python实现) 线性回归是机器学习中最基本的一个算法,大部分算法都是由基本的算法演变而来.本文着重用很简单的语言说一下线性回归. 线性回归 包括一元线性回归和多元线性回归,一元指的是只有一个x和一个y.通过一元对于线性回归有个基本的理解. 一元线性回归就是在数据中找到一条直线,以最小的误差来(Loss)来拟和数据. 上面提到的误差可以这样表示,假设那条直线如下图:…
在机器学习中,性能指标(Metrics)是衡量一个模型好坏的关键,通过衡量模型输出y_predict和y_true之间的某种“距离”得出的. 对学习器的泛化性能进行评估,不仅需要有效可行的试验估计方法,还需要有衡量模型泛化能力的评估价标准,这就是性能度量(performance measure).性能度量反映了任务需求,在对比不同模型的能力时,使用不同的性能度量往往会导致不的评判结果:这意味着模型的“好坏”是相对的,什么样的模型是好的,不仅取决于算法和数据,还决定于任务需求. 性能指标往往使我们…
译者按: AI时代,不会机器学习的JavaScript开发者不是好的前端工程师. 原文: Machine Learning with JavaScript : Part 1 译者: Fundebug 为了保证可读性,本文采用意译而非直译.另外,本文版权归原作者所有,翻译仅用于学习 使用JavaScript做机器学习?不是应该用Python吗?是不是我疯了才用JavaScript做如此繁重的计算?难道我不用Python和R是为了装逼?scikit-learn(Python机器学习库)不能使用Pyt…
分享一篇来自机器之心的文章.关于机器学习的起步,讲的还是很清楚的.原文链接在:只需十四步:从零开始掌握Python机器学习(附资源) Python 可以说是现在最流行的机器学习语言,而且你也能在网上找到大量的资源.你现在也在考虑从 Python 入门机器学习吗?本教程或许能帮你成功上手,从 0 到 1 掌握 Python 机器学习,至于后面再从 1 到 100 变成机器学习专家,就要看你自己的努力了.本教程原文分为两个部分,机器之心在本文中将其进行了整合,原文可参阅:suo.im/KUWgl 和…
网上有很多关于sklearn的学习教程,大部分都是简单的讲清楚某一方面,其实最好的教程就是官方文档. 官方文档地址:https://scikit-learn.org/stable/ (可是官方文档非常详细,同时许多人对官方文档的理解和结构上都不能很好地把握,我也打算好好学习sklearn,这可能是机器学习的神器),下面先简单介绍一下sklearn. 自2007年发布以来,scikit-learn已经成为Python重要的机器学习库了,scikit-learn简称sklearn,支持包括分类,回归…
机器学习岗位的面试中通常会对一些常见的机器学习算法和思想进行提问,在平时的学习过程中可能对算法的理论,注意点,区别会有一定的认识,但是这些知识可能不系统,在回答的时候未必能在短时间内答出自己的认识,因此将机器学习中常见的原理性问题记录下来,保持对各个机器学习算法原理和特点的熟练度. 本文总结了机器学习一些面试题和笔试题,以便自己学习,当然了也为了方便大家,题目是网上找的额,如果有侵权请联系小编,还有,不喜勿喷,谢谢!!! 算法分类 下面图片是借用网友做的,很好的总结了机器学习的算法分类: 问答题…
机器学习是一项经验技能,经验越多越好.在项目建立的过程中,实践是掌握机器学习的最佳手段.在实践过程中,通过实际操作加深对分类和回归问题的每一个步骤的理解,达到学习机器学习的目的. 预测模型项目模板不能只通过阅读来掌握机器学习的技能,需要进行大量的练习.本文将介绍一个通用的机器学习的项目模板,创建这个模板总共有六个步骤.通过本文将学到: 端到端地预测(分类与回归)模型的项目结构.如何将前面学到的内容引入到项目中.如何通过这个项目模板来得到一个高准确度的模板.机器学习是针对数据进行自动挖掘,找出数据…
简介 前置声明:本专栏的所有文章皆为本人学习时所做笔记而整理成篇,转载需授权且需注明文章来源,禁止商业用途,仅供学习交流.(欢迎大家提供宝贵的意见,共同进步) 正文: 机器学习,顾名思义,就是研究计算机如何学习和模拟人类的行为,并根据已学得的知识对该行为进行增强和改进. 举例来说,假设邮箱收到了一封新邮件,通常我们可以通过邮件里是否含有广告.不相关信息以及乱码等特征,人为的来判断这封邮件是否是一封垃圾邮件. 如上述可知,机器学习模拟人类的行为,所以它同样依据这些邮件内容的特征来判断一封邮件是否是…