Spark 计算人员二度关系】的更多相关文章

1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友的朋友的朋友就是这个陌生人.你们的关系是 你->朋友->朋友->陌生人 4.四度人脉:比三度增加一度,你们的关系是,你->朋友->朋友->朋友->陌生人 5.五度人脉:你->朋友->朋友->朋友->朋友->陌生人 ,像上面这张图片表示的就…
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友的朋友的朋友就是这个陌生人.你们的关系是 你->朋友->朋友->陌生人 4.四度人脉:比三度增加一度,你们的关系是,你->朋友->朋友->朋友->陌生人 5.五度人脉:你->朋友->朋友->朋友->朋友->陌生人 ,像上面这张图片表示的就…
1.一度人脉:双方直接是好友 2.二度人脉:双方有一个以上共同的好友,这时朋友网可以计算出你们有几个共同的好友并且呈现数字给你.你们的关系是: 你->朋友->陌生人 3.三度人脉:即你朋友的朋友的朋友就是这个陌生人.你们的关系是 你->朋友->朋友->陌生人 4.四度人脉:比三度增加一度,你们的关系是,你->朋友->朋友->朋友->陌生人 5.五度人脉:你->朋友->朋友->朋友->朋友->陌生人 ,像上面这张图片表示的就…
关系计算问题描述 二度关系是指用户与用户通过关注者为桥梁发现到的关注者之间的关系.目前微博通过二度关系实现了潜在用户的推荐.用户的一度关系包含了关注.好友两种类型,二度关系则得到关注的关注.关注的好友.好友的关注.好友的好友四种类型. 如果要为全站亿级用户根据二度关系和四种桥梁类型推荐桥梁权重最高 TopN 个用户,大致估算了下总关系量在千亿级别,按照原有的 Mapreduce 模式计算整个二度关系,需要以桥梁用户为 Key,把它的关注和粉丝两个亿级的表做 Join,如果活跃用户按照亿计,平均关…
最近做了一个项目,要求找出二度人脉的一些关系,就好似新浪微博的“你可能感兴趣的人” 中,间接关注推荐:简单描述:即你关注的人中有N个人同时都关注了 XXX . 在程序的实现上,其实我们要找的是:若 User1 follow了10个人 {User3,User4,User5,... ,User12}记为集合UF1,那么 UF1中的这些人,他们也有follow的集合,分别是记为: UF3(User3 follow的人),UF4,UF5,...,UF12:而在这些集合肯定会有交集,而由最多集合求交产生的…
一.问题定义 我在网上找了些,关于二度人脉算法的实现,大部分无非是通过广度搜索算法来查找,犹豫深度已经明确了2以内:这个算法其实很简单,第一步找到你关注的人:第二步找到这些人关注的人,最后找出第二步结果中出现频率最高的一个或多个人(频率这块没完成),即完成. 但如果有千万级别的用户,那在运算时,就肯定会把这些用户的follow 关系放到内存中,计算的时候依次查找:先说明下我没有明确的诊断对比,这样做的效果一定没 基于hadoop实现的好:只是自己,想用hadoop实现下,最近也在学:若有不足的地…
直接上代码: package horizon.graphx.util import java.security.InvalidParameterException import horizon.graphx.util.CollectionUtil.CollectionHelper import org.apache.spark.graphx._ import org.apache.spark.rdd.RDD import org.apache.spark.storage.StorageLevel…
----本节内容------- 1.遗留问题解答 2.Spark核心概念 2.1 RDD及RDD操作 2.2 Transformation和Action 2.3 Spark程序架构 2.4 Spark on Yarn运行流程 2.5 WordCount执行原理 3.Spark计算引擎原理 3.1 Spark内部原理 3.2 生成逻辑执行图 3.3 生成物理执行图 4.Spark Shuffle解析 4.1 Shuffle 简史 4.2  Spark Shuffle ·Shuffle Write…
背景 本文给出了一个简单的计算图中每一个点的N度关系点集合的算法,也就是N跳关系. 之前通过官方文档学习和理解了一下GraphX的计算接口. N度关系 目标: 在N轮里.找到某一个点的N度关系的点集合. 实现思路: 1. 准备好边数据集.即"1 3", "4, 1" 这种点关系. 使用GraphLoader 的接口load成Graph 2. 初始化每一个Vertice的属性为空Map 3. 使用aggregateMessages把VerticeID和totalRou…
[TOC] Spark计算模型 Spark程序模型 一个经典的示例模型 SparkContext中的textFile函数从HDFS读取日志文件,输出变量file var file = sc.textFile("hdfs://***") RDD中的filter函数过滤带有'ERROR'的行,输出errors(一个RDD) var errors = file.filter(line=>line.contains("ERROR")) RDD中的count函数返回&q…
一段程序只能完成功能是没有用的,只能能够稳定.高效率地运行才是生成环境所需要的. 本篇记录了Spark各个角度的调优技巧,以备不时之需. 一.配置参数的方式和观察性能的方式 额...从最基本的开始讲,可能一些刚接触Spark的人不是很清楚Spark的一些参数变量到底要配置在哪里. 可以通过三种方式配置参数,任选其一皆可. spark-env.sh文件中配置:最近常使用的配置方式,格式可以参考其中的一些官方保留的配置. 程序中通过SparkConf配置:通过SparkConf对象set方法设置键值…
1. 什么是Task? 在前面的章节里描写叙述过几个角色,Driver(Client),Master,Worker(Executor),Driver会提交Application到Master进行Worker上的Executor上的调度,显然这些都不是Task. Spark上的几个关系能够这样理解: Application: Application是Driver在构建SparkContent的上下文的时候创建的,就像申报员,如今要构建一个能完毕任务的集群,须要申报的是这次须要多少个Executor…
1. 什么是Task? 在前面的章节里描述过几个角色,Driver(Client),Master,Worker(Executor),Driver会提交Application到Master进行Worker上的Executor上的调度,显然这些都不是Task. Spark上的几个关系可以这样理解: Application: Application是Driver在构建SparkContent的上下文的时候创建的,就像申报员,现在要构建一个能完成任务的集群,需要申报的是这次需要多少个Executor(可…
一,背景介绍 在新浪微博.人人网等社交网站上,为了使用户在网络上认识更多的朋友,社交网站往往提供类似“你可能感兴趣的人”.“间接关注推荐”等好友推荐的功能,其中就包含了二度人脉算法. 二,算法实现 原始数据集测试: a b b c a c b d c e e c e f 数据集说明:为关注关系,即a关注b,b关注c和d,所以a的二度人脉应该是d和c,而c已经被a关注,所以应该舍去,自己不能二度人脉是自己,如c关注e,而e又关注c 代码实现,代码用了两个Job实现的 难点:两个job如何先后执行…
spark是一个高性能的并发的计算平台,而netflow是一种一般来说数量级很大的数据.本文记录初步使用spark 计算netflow数据的大致过程. 本文包括以下过程: 1. spark环境的搭建 2. netflow数据的生成与处理 3. 通过spark 计算netflow数据 spark环境的搭建 spark环境的搭建主要分2部分. hadoop的环境的搭建 spark的安装 hadoop的安装 hadoop的安装包括,hdfs的安装和yarn的安装.  读本部分之前要先去查阅hdfs和y…
"发现最有正能量的网络达人".Spark开发人员大赛火热进行! watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvd3d0dHoxOTc0/font/5a6L5L2T/fontsize/400/fill/I0JBQkFCMA==/dissolve/70/gravity/SouthEast" alt=""> 2014年9月30日,2014 Spark开发人员大赛在北京正式启动.本次大赛由Spark亚太研究院联合国…
转载请注明出处: http://blog.csdn.net/u013074302/article/details/76422551 导语 在NLP领域,语义相似度的计算一直是个难题:搜索场景下query和Doc的语义相似度.feeds场景下Doc和Doc的语义相似度.机器翻译场景下A句子和B句子的语义相似度等等.本文通过介绍DSSM.CNN-DSSM.LSTM-DSSM等深度学习模型在计算语义相似度上的应用,希望给读者带来帮助. 1. 背景 以搜索引擎和搜索广告为例,最重要的也最难解决的问题是语…
import numpy as np from sklearn.metrics.pairwise import cosine_similarity a = np.array([1, 2, 3, 4]) b = np.array([1, 2, 6, 8]) dot = np.dot(a, b) norma = np.linalg.norm(a) normb = np.linalg.norm(b) cos = dot / (norma * normb) skl_cos = cosine_simila…
[基于spark IM 的二次开发笔记]第一天 各种配置 http://juforg.iteye.com/blog/1870487 http://www.igniterealtime.org/downloads/source.jsp…
friend表结构 DROP TABLE IF EXISTS FRIEND; create table friend(     uid        bigint not null comment '用户标识',     friend_uid    bigint not null comment '申请加为好友的用户标识',     sys_create_date datetime not null comment '申请时间',     sys_last_update datetime not…
今天,工信部官网的公示文件显示,新通用顶级域名.vip..xyz以及.club域名注册局已正式获得工信部审批,成为中国境内合法的顶级域名注册管理机构,这标志着.vip..xyz以及.club域名成为首批通过工信部资质审批的境外新顶级域名,使用这些域名在境内建站的客户,可以提交网站备案了. 新通用顶级域名.vip..xyz以及.club域名皆是全球注册量排名前10的域名,在全球有着广阔的用户基础,在中国市场的占有率更是首屈一指.其中,作为26个字母的最后三个字母,.xyz域名含义通俗,其注册量已突…
spark 计算两个dataframe 的差集.交集.合集,只选择某一列来对比比较好.新建两个 dataframe : import org.apache.spark.{SparkConf, SparkContext} import org.apache.spark.sql.SQLContext def main(args: Array[String]): Unit = { val conf = new SparkConf().setAppName("TTyb").setMaster(…
[原创 Hadoop&Spark 动手实践 7]Spark计算引擎剖析与动手实践 目标: 1. 理解Spark计算引擎的理论知识 2. 动手实践更深入的理解Spark计算引擎的细节 3. 通过编程案例加深理解…
声明:本文最初发表于赖勇浩(恋花蝶)的博客http://blog.csdn.net/lanphaday 先将两张图片转化为直方图,图像的相似度计算就转化为直方图的距离计算了,本文依照如下公式进行直方图相似度的定量度量: Sim(G,S)= 其中G,S为直方图,N 为颜色空间样点数 转换为相应的 Python 代码如下: #!/usr/bin/env python # coding=utf-8 import Image def make_regalur_image(img,size=(256,25…
首先在Linux环境安装spark: 可以从如下地址下载最新版本的spark: https://spark.apache.org/downloads.html 这个下载下来后是个tgz的压缩包,解压后spark环境就安装好了 或者从github上下载: #git clone git://github.com/apache/spark.git 安装好后,进入到spark的根目录,就可以通过spark提供的一些脚本命令行来用spark进行计算了,一个例子 ./bin/spark-submit exa…
转自http://www.cnblogs.com/rong86/p/3559616.html 函数功能:两个数组间元素逐个计算的二值操作 使用方法:C=bsxfun(fun,A,B) 两个数组A合B间元素逐个计算的二值操作,fun是函数句柄或者m文件,也可以为如下内置函数: @plus 加@minus 减@times 数组乘<Simulink与信号处理>@rdivide 左除@ldivide 右除@power 数组幂乘@max 二值最大值@min 二值最小值@rem 余数@mod 求模@ata…
项目中需要算2个字符串的相似度,是根据余弦相似性算的,下面具体介绍一下: 余弦相似度计算 余弦相似度用向量空间中两个向量夹角的余弦值作为衡量两个个体间差异的大小.余弦值越接近1,就表明夹角越接近0度,也就是两个向量越相似,这就叫"余弦相似性". 我们知道,对于两个向量,如果他们之间的夹角越小,那么我们认为这两个向量是越相似的.余弦相似性就是利用了这个理论思想.它通过计算两个向量的夹角的余弦值来衡量向量之间的相似度值.余弦相似性推导公式如下: public class Cosine {…
关卡连接: https://codecombat.163.com/play/level/the-second-kithmaze 很多人试过,但只有少数人能穿过此迷宫. 简介: 记住,你只需 一个 while-true 循环.它会反复执行! 默认代码 # 使用while-true循环穿越迷宫! while True:     hero.moveRight()     # 再输入3条控制命令通过迷宫 概览 请仔细数下在你的 while-true 循环 里要多少移动才能走出这个迷宫! 记住,每一关里应…
C# 采用动态规划算法,计算两个字符串之间的相似程度. public static double CountTextSimilarity(string textX, string textY, bool isCase = false) // 计算文本相似度 { if (textX.Length <= 0 || textY.Length <= 0) { return (0); } if (!isCase) { textX = textX.ToLower(); textY = textY.ToLo…
https://www.jianshu.com/p/8707cd015ba1 问题描述: 以下是qq好友关系,进行好友推荐,比如:老王和二狗是好友 , 二狗和春子以及花朵是好友,那么老王和花朵 或者老王和春子就有可能也认识,可以对老王推荐春子和或花朵作为好友. 注意以下是制表符:tab建,所以程序中用 /t进行分割 老王 二狗 老王 二毛 二狗 春子 二狗 花朵 老王 花朵 花朵 老王 春子 菊花 问题分析 问题分析: 主 ---> 从 从 --->主 分别列出每一个关系,然后都列出从--&g…