题目描述 小 Y 是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有\(n\)颗小星星,用 \(m\)条彩色的细线串了起来,每条细线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这个饰品只剩下了\(n-1\)条细线,但通过这些细线,这颗小星星还是被串在一起,也就是这些小星星通过这些细线形成了树.小 Y 找到了这个饰品的设计图纸,她想知道现在饰品中的小星星对应着原来图纸上的哪些小星星.如果现在饰品中两颗小星星有细线相连,那么要求对应的小星星原来的图纸上也有细线相连.小 Y…
4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 707  Solved: 419[Submit][Status][Discuss] Description 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细 线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这个饰品只剩下了n?1条细线,但 通过这些细线,这颗小星星还是被串在一起,也就是这…
4455: [Zjoi2016]小星星 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 527  Solved: 317[Submit][Status][Discuss] Description 小Y是一个心灵手巧的女孩子,她喜欢手工制作一些小饰品.她有n颗小星星,用m条彩色的细线串了起来,每条细 线连着两颗小星星.有一天她发现,她的饰品被破坏了,很多细线都被拆掉了.这个饰品只剩下了n?1条细线,但 通过这些细线,这颗小星星还是被串在一起,也就是这…
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board, a chess want to go to the position (n,m) from the position (1,1). The chess is able to go to position (x2,y2) from the position (x1,y1), only and if…
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题给矩阵相同,之后都是错排.现在要求的就是,当前行在所有与上一行不交的排列中字典序排第几.同样考虑数位DP,从后往前枚举到当前位开始不卡限制.用两个树状数组分别维护:(1)这一位之后的数组成的集合 (2)这一位之后当前行和上一行均有的数的集合.那么分当前这位是否使用上一行这一位之后存在的数讨论,现在要…
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相同. 还有输入应该是第二行是糖果,第三行是药片 题解:好吧这题不是神题,而是套路题,容斥+DP的套路在很多题中都用到过,不过我虽然知道套路,却被这题的第一步卡住了. 我们将两个序列从小到大排序. 好吧这步看起来可能很水,正常人看到无序的序列都会先想到排序,…
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多少种方案可以连成一张联通图 显然考虑容斥呗?设$f_i$表示状态为$i$的点连成联通图的合法方案,$g_i$表示状态为$i$的点随便连边的所有方案 显然$g_i$可以先预处理出来?就等于$\prod_{u,v\in i}a_{u,v}$.然后$f_i$就等于$g_i$减去不合法的数量.不合法数量显然…
题意 题目链接 Sol 考虑直接对询问的集合做MinMax容斥 设\(f[i][sta]\)表示从\(i\)到集合\(sta\)中任意一点的最小期望步数 按照树上高斯消元的套路,我们可以把转移写成\(f[x] = a_x f[fa] + b_x\)的形式 然后直接推就可以了 更详细的题解 #include<bits/stdc++.h> #define LL long long using namespace std; const int MAXN = 1e6 + 10, mod = 99824…
题面 传送门 题解 首先\(x\)和\(y\)两维互相独立,可以分开考虑,我们以\(x\)为例 我们把\(x\)做个前缀和,那么就是问有多少\(i\)满足\(s_is_{i-1}<0\),其中\(s_0=1\).这个条件等价于\(\max(s_i,s_{i-1})>0\)且\(\min(s_i,s_{i-1})<0\).我们可以容斥一下,就是总数减去\(\max(s_i,s_{i-1})<0\)的个数减去\(\min(s_i,s_{i-1})>0\)的个数 注意到一次单点修改…
题目传送门 https://loj.ac/problem/2542 题解 肯定一眼 MinMax 容斥吧. 然后问题就转化为,给定一个集合 \(S\),问期望情况下多少步可以走到 \(S\) 中的点. 考虑 dp 的话,令 \(dp[x]\) 表示从 \(x\) 开始走的答案. 如果 \(x \in S\),那么 \(dp[x] = 0\): 否则,\(dp[x] = 1 + \frac{\sum\limits_{(x, y) \in T} dp[y]}{deg_x}\). 这个东西直接树上高斯…