5.23考试总结(NOIP模拟2)】的更多相关文章

5.23考试总结(NOIP模拟2) 洛谷题单 看第一题第一眼,不好打呀;看第一题样例又一眼,诶,我直接一手小阶乘走人 然后就急忙去干T2T3了 后来考完一看,只有\(T1\)骗到了\(15pts\)[尴尬\(.jpg\)] \(T1\)P3322 [SDOI2015]排序 背景 说实话,看见这题正解是dfs的那一刻,我人都傻了[流泪.jpg] 在讲这题的时候赵队@yspm 类比了线段树的思想%%%%%,在食用本篇题解时可以想一下 解题思路 最基本的一个思想:结果与操作的顺序无关,因为在更换的时候…
T1 数数 解题思路 大概是一个签到题的感觉...(但是 pyt 并没有签上) 第一题当然可以找规律,但是咱们还是老老实实搞正解吧... 先从小到大拍个序,这样可以保证 \(a_l<a_r\) 直接去掉绝对值. 然后就可以推出如下柿子: \[\displaystyle\sum_{l=1}^{k}-a_l\times(k-l)+\sum_{r=2}^{k}a_r\times a_r(r-1) \] \[\displaystyle\sum_{i=1}^{k}a_i\times (2\times i-…
6.17考试总结(NOIP模拟8) 背景 考得不咋样,有一个非常遗憾的地方:最后一题少取膜了,\(100pts->40pts\),改了这么多年的错还是头一回看见以下的情景... T1星际旅行 前言 考试的时候用一个自己感觉非常妙的思路骗了20pts,因为是双向边,所以分成两个边存,边的tot从2开始,这样可以保证没一组边的序号通过取\(xor\)可以相互转化. 然后对于每一个边记录经过次数,并且记一下经过次数为1和2的边的总数,然后对于dfs时转移的就是状压的每组边的状态,当然也可以拿Hash存…
5.22考试总结(NOIP模拟1) 改题记录 T1 序列 题解 暴力思路很好想,分数也很好想\(QAQ\) (反正我只拿了5pts) 正解的话: 先用欧拉筛把1-n的素数筛出来 void get_Prime() { for(int i=2;i<=M;i++) { if(!b[i]) pri[++tot]=i; for(int j=1;j<=tot&&i*pri[j]<=M;j++) { b[i*pri[j]]=true; if(!(i%pri[j])) break; }…
因为考试过多,所以学校的博客就暂时咕掉了,放到家里来写 不过话说,vscode的markdown编辑器还是真的很好用 先把 \(noip\) 模拟 \(23\) 的总结写了吧.. 俗话说:"连胜之后必是连败,连败之后必是连胜". 经过之前连续五场比赛的挂分,终于回来了一点点... 菜我还是... 咱也不知道当时的零分是怎么考出来的.... \(\color{green}{\huge{\text{菜}}}\) ........ 好吧...... 每次考爆炸的时候在赛后总会发现自己的题目还…
有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a_i-\frac{(j-i)\times (j-i-1)}{2}]$ 设$j<k$,对$i$来说,$k$优于$j$,当且仅当$2\times i>\frac{2\times(f_j-f_k)+k^2+k-j^2-j}{k-j}$ 斜率优化,$CDQ$分治,先按$a$排序,分治中按$id$排序满足限…
9.1 辣鸡 可以把答案分成 每个矩形内部连线 和 矩形之间的连线 两部分 前半部分即为\(2(w-1)(h-1)\),后半部分可以模拟求(就是讨论四种相邻的情况) 如果\(n^2\)选择暴力模拟是有\(35pts\)的 发现按横坐标排序后,如果有一矩形与当前矩形横向不相邻,则之后矩形都是没有贡献的 所以枚举时比较横坐标视情况跳出 因为会产生贡献的矩形对并不多(不超过\(4e5\),具体还会小),所以这样优化以后可以通过 9.2 模板 暴力跳祖先的话是有\(30pts\)的,经过一番纯玄学特判可…
背景 时间分配与得分成反比,T1 20min 73pts,T2 1h 30pts,T3 2h 15pts(没有更新tot值,本来应该是40pts的,算是本次考试中最遗憾的地方了吧),改起来就是T3比较难改,其他的还好... 两位队爷没考,战神也出了点意外,让我们这些菜鸡钻了空子. 多组数据一定要清零 T1 匹配 前言 我就没想到模拟赛会出这种水题,正解的话hash与KMP都可以,只可惜我只留下20分钟给这题,实力有限,时间有限,就草草打了个暴力.出乎意料整到了\(73pts\)属实出乎意料..…
前言 就这题考的不咋样果然还挺难改的.. T1 辣鸡 前言 我做梦都没想到这题正解是模拟,打模拟赛的时候看错题面以为是\(n\times n\)的矩阵,喜提0pts. 解题思路 氢键的数量计算起来无非主要就是两种情况: 整个矩阵里面的 各个矩阵之间相邻的 整个矩阵里的比较好算: \(\sum\limits_{i=1}^{n}(2\times q[i].x_2-q[i].x_1)\times(q[i].y_2-q[i].y_1)\) 主要是矩阵之间的比较难整,鉴于x和y相邻的情况差不多,以下只讲述…
前言 昨天说好不考试来着,昨晚就晚睡颓了一会,今天遭报应了,也没好好考,考得挺烂的就不多说了. T1 string 解题思路 比赛上第一想法就是打一发sort,直接暴力,然后完美TLE40pts,这一部分分也是所有人都拿到了,没什么意义.. 正解是线段树,主流打法有两种: 开26棵线段树,分别对26种字母进行维护. 只开一棵线段树,对于区间维护求值. 我当然是选择码量较小并且快的第二种了QAQ,但是聪明睿智的@WindZR选择了第一种打法(code),虽然他多加了好几个inline快了2s才过.…