SparkStreaming整合flume】的更多相关文章

SparkStreaming整合flume 在实际开发中push会丢数据,因为push是由flume将数据发给程序,程序出错,丢失数据.所以不会使用不做讲解,这里讲解poll,拉去flume的数据,保证数据不丢失. 1.首先你得有flume 比如你有:[如果没有请走这篇:搭建flume集群(待定)] 这里使用的flume的版本是apache1.6 cdh公司集成 这里需要下载 (1).我这里是将spark-streaming-flume-sink_2.11-2.0.2.jar放入到flume的l…
先说下版本情况: Spark 2.4.3 Scala 2.11.12 Flume-1.6.0 Flume配置文件: simple-agent.sources = netcat-source simple-agent.sinks = spark-sink simple-agent.channels = memory-channel #Describe/configure the source simple-agent.sources.netcat-source.type = netcat simp…
Flume配置文件: simple-agent.sources = netcat-source simple-agent.sinks = spark-sink simple-agent.channels = memory-channel #Describe/configure the source simple-agent.sources.netcat-source.type = netcat simple-agent.sources.netcat-source.bind = centos si…
文章目录 注意事项 SparkStreaming从flume中poll数据 步骤 一.开发flume配置文件 二.启动flume 三.开发sparkStreaming代码 1.创建maven工程,导入jar包 2.开发代码 四.向监控目录中导入文本文件 flume将数据push给SparkStreaming 步骤 一.开发flume配置文件 二.启动flume 三.开发代码 四.向监控目录中导入文本文件 注意事项 一.首先要保证安装了flume,flume相关安装文章可以看[Hadoop离线基础…
一.简介 Apache Flume是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming提供了以下两种方式用于Flume的整合. 二.推送式方法 在推送式方法(Flume-style Push-based Approach)中,Spark Streaming程序需要对某台服务器的某个端口进行监听,Flume通过avro Sink将数据源源不断推送到该端口.这里以监听日志文件为例,具体整合方式如下: 2.1 配置日…
一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 Flume 的整合. 二.推送式方法 在推送式方法 (Flume-style Push-based Approach) 中,Spark Streaming 程序需要对某台服务器的某个端口进行监听,Flume 通过 avro Sink 将数据源源不断推送到该端口.这里以监听日志文件为例,具体整合方式如…
Spark Streaming 整合 Flume ​ 一.简介二.推送式方法        2.1 配置日志收集Flume        2.2 项目依赖        2.3 Spark Streaming接收日志数据        2.4 项目打包        2.5 启动服务和提交作业        2.6 测试        2.7 注意事项三.拉取式方法        3.1 配置日志收集Flume        2.2 新增依赖        2.3 Spark Streaming…
一.简介 Apache Flume 是一个分布式,高可用的数据收集系统,可以从不同的数据源收集数据,经过聚合后发送到分布式计算框架或者存储系统中.Spark Straming 提供了以下两种方式用于 Flume 的整合. 二.推送式方法 在推送式方法 (Flume-style Push-based Approach) 中,Spark Streaming 程序需要对某台服务器的某个端口进行监听,Flume 通过 avro Sink 将数据源源不断推送到该端口.这里以监听日志文件为例,具体整合方式如…
1. Spark Streaming 1.1 简介(来源:spark官网介绍) Spark Streaming是Spark Core API的扩展,其是支持可伸缩.高吞吐量.容错的实时数据流处理.Spark Streaming的数据源可以为kafka,Flume,Kinesis或者是TCP socket,并且这些数据可以使用复杂的算法来处理,这些算法用高级函数表示,如map.reduce.join和window.最后被处理的数据可以被push到文件存储系统,数据库,live dashboards…
一.下载依赖jar包 具体可以参考:SparkStreaming整合kafka编程 二.创建Java工程 太简单,略. 三.实际例子 spark的安装包里面有好多例子,具体路径:spark-2.1.1-bin-hadoop2.7\examples. JavaDirectKafkaWordCount.java package com.spark.test; import java.util.HashMap; import java.util.HashSet; import java.util.Ar…