hdu_4828_Grids(卡特兰数+逆元)】的更多相关文章

题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=4828 题意:中文,不解释 题解:实际就是一个卡特兰递推: Catalan(n+1)= Catalan(n)*(4*n+2)/(n+2)(mod M),求的时候要用逆元,这里我用筛法求逆元,用空间换时间,快速幂AC要用800+ms,筛法逆元只需要200+ms. #include<cstdio> ,mod=,i; ,}; void init(){ ;i<maxn-;i++)inv[i]=inv[…
BC # 32 1003 题意:定义了括号的合法排列方式,给出一个排列的前一段,问能组成多少种合法的排列. 这道题和鹏神研究卡特兰数的推导和在这题中的结论式的推导: 首先就是如何理解从题意演变到卡特兰数: 排列的总长度为 n ,左右括号各为 m = n / 2 个.当给定的排列方式完全合法的时候,剩下需要排列的左右括号的数量就已经确定了,而在排列的过程中,左括号要始终大于等于右括号的数量.设现在有 a 个左括号, b 个右括号,那么这个就可以当做从( a , b )点到 ( m , m )点且不…
HDU 4828 Grids 思路:能够转化为卡特兰数,先把前n个人标为0,后n个人标为1.然后去全排列,全排列的数列,假设每一个1的前面相应的0大于等于1,那么就是满足的序列.假设把0看成入栈,1看成出栈.那么就等价于n个元素入栈出栈,求符合条件的出栈序列,这个就是卡特兰数了.然后去递推一下解,过程中须要求逆元去计算 代码: #include <stdio.h> #include <string.h> const int N = 1000005; const long long…
Robot Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Problem Description There is a robot on the origin point of an axis.Every second, the robot can move right one unit length or do nothing.If the robot is on the…
Grids Time Limit: 10000/5000 MS (Java/Others)    Memory Limit: 65535/65535 K (Java/Others) Problem Description 度度熊最近很喜欢玩游戏.这一天他在纸上画了一个2行N列的长方形格子.他想把1到2N这些数依次放进去,但是为了使格子看起来优美,他想找到使每行每列都递增的方案.不过画了很久,他发现方案数实在是太多了.度度熊想知道,有多少种放数字的方法能满足上面的条件?   Input 第一行为数…
1856: [Scoi2010]字符串 Time Limit: 5 Sec  Memory Limit: 64 MBSubmit: 1194  Solved: 651[Submit][Status][Discuss] Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不能少于0的个数.现在lxhgww想要知道满足要求的字符串共有多少个,聪明的程序员们,你们能帮助他吗? Input…
首先我按着我的理解说一下它为什么是卡特兰数,首先卡特兰数有一个很典型的应用就是求1~N个自然数出栈情况的种类数.而这里正好就对应了这种情况.我们要满足题目中给的条件,数字应该是从小到大放置的,1肯定在左上角,所以1入栈,这时候我们放2,如果我们把2放在了1的下面就代表了1出栈,把2放在上面就代表了2也进栈(可以看一下hint中第二组样例提示),以此类推,这样去放数,正好就对应了上面一行入栈,下面一行出栈的情况,一共n行,对应上限为n的卡特兰数. 需要注意的地方就是在使用卡特兰数递推式的时候,除法…
I.あなたの蛙が帰っています   链接:https://www.nowcoder.com/acm/contest/85/I来源:牛客网     这个题有点意思,是卡特兰数,自行百度就可以.卡特兰数用处很多,买票问题,出栈问题,括号配对等.传送门:很厉害 这个题就是出栈问题,问你出栈的方式有多少种.因为第一个不能最先输出来,随便写写就好了. 找出来公式就是C(2n,n)-C(2n,n-1).对于这个题来说就是(C(2n,n)-C(2n,n-1)) - (C(2m,m)-C(2m,m-1)). 组合…
卡特兰数相关公式 : \(H_n = {C_{2n}^n \over n+1)}\) \(H_n = {(4n-2)\over n+1}\times H_{n-1}\) \(H_n = C_{2n}^n - C_{2n}^{n-1}\) $ H_n = \begin{cases} \sum_{i=1}^{n} H_{i-1} H_{n-i} & n \geq 2, n \in \mathbf{N_{+}}\ 1 & n = 0, 1 \end{cases} $ 因为 \(n\le 1000…
Robot Time Limit: 12000/6000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Total Submission(s): 483    Accepted Submission(s): 244 Problem Description There is a robot on the origin point of an axis.Every second, the robot can move rig…