剑指offer——09青蛙跳台阶】的更多相关文章

题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果).   题解: 说俗一点,就是找规律: 不不,首先,我们分析一下,青蛙第一次可以跳一步,则其跳剩下的n-1个台阶的方法数为:f(n-1); 也可以跳两步,则其跳剩下n-2个台阶的方法数为:f(n-2); 故跳n台阶的方法为f(n-1) + f(n-2);   class Solution { public: int jumpFloor(int number) { ) ;…
剑指 Offer 10- II. 青蛙跳台阶问题 Offer 10- II 题目描述: 动态规划方程: 循环求余: 复杂度分析: package com.walegarrett.offer; import java.util.Map; import java.util.TreeMap; /** * @Author WaleGarrett * @Date 2020/12/6 17:06 */ /** * 这是一道动态规划的题目:题目要求求解总共多少种解法.答案需要取模 1e9+7(10000000…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 很裸的斐波那契数列. class Solution { public: int jumpFloor(int number) { if(number<=0 || number==1){ return 1; } return jumpFloor(number-1) + jumpFloor(number-2); } };…
一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 其实题目很水...就是一个等比数列通项公式嘛 f(0)=1 f(1)=1 f(n)=f(0)+f(1)+...+f(n-1) ==> f(n)=2*f(n-1) (when n>=2) ==> f(n)=2^(n-1) class Solution { public: int jumpFloorII(int number){ /* 暴力写法 if(number==0){ ret…
一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. java版本: public class Solution { public static void main(String[] args){ long startTime=System.currentTimeMillis(); System.out.println("第4项的结果是:"+JumpFloorII(4)); long endTime=System.current…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 问题分析 我们将跳法个数y与台阶数n视为一个函数关系,即y=f(n).首先从第一级开始,当n=1时,只有一种跳法,即f(1)=1.当有两级台阶时,有两种跳法,跳两个一阶,或直接跳两阶,共有两种解法,即f(n)=2. 当n>2时,对于n级台阶而言,每次只能选跳一阶或者二阶中的一种,无论是哪一种,都只有唯一的选择.故当跳一阶的时候,跳法和f(n-1)的跳法个数相同,当跳二…
原创博文,转载请注明出处! # 本文是牛客网<剑指offer>刷题笔记 1.题目 # 一只青蛙一次可以跳1级台阶,也可以跳2级.求该青蛙跳n级的台阶总共有多少种跳法. 2.思路 # 跳0级,f(0)=0 # 跳1级,一次跳一级一种跳法,f(1)=1 # 跳2级,第一次跳一级和第一次跳两级两种跳法,f(2)=2 # 跳3级,第一次跳一级(剩余两级有f(2)种跳法)和第一次跳两级(剩余一级有f(1)种跳法),f(3)=f(2)+f(1) # 跳n级,第一次跳一级(剩余n-1级有f(n-1)种跳法)…
题目 一仅仅青蛙一次能够跳上1级台阶,也能够跳上2级--它也能够跳上n级. 求该青蛙跳上一个n级的台阶总共同拥有多少种跳法. 思路 用Fib(n)表示青蛙跳上n阶台阶的跳法数,设定Fib(0) = 1: 当n = 1 时. 仅仅有一种跳法,即1阶跳,即Fib(1) = 1; 当n = 2 时. 有两种跳的方式,一阶跳和二阶跳,即Fib(2) = Fib(1) + Fib(0) = 2; 当n = 3 时.有三种跳的方式,第一次跳出一阶台阶后,后面还有Fib(3-1)中跳法,第一次跳出二阶台阶后.…
该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 找规律: 1阶:1种: 2阶:2种: 3阶:4种: 4阶:8种: n阶:2f(n-1)种: 或者: n-1阶:f(n-2)+f(n-3)+-f(1)+f(0) n阶:f(n-1)+f(n-2)+-f(1)+f(0) => 2f(n-1) 得出一个斐波那契函数. Go语言实现: 方法一:递归 func jumpFloor2(N int)…
题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入包括一个整数n(1<=n<=50). 输出: 对应每个测试案例, 输出该青蛙跳上一个n级的台阶总共有多少种跳法. 样例输入: 样例输出: 解题思路: 这道题目跟之前的跳台阶大同小异,只是跳台阶的阶数从1变到了n,也就是说,不再是跳一下或者跳两下的问题,而是跳n下的问题.那么解题的思路显然还得逆向分析,我们发现: 每…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). public class Solution { public int JumpFloor(int n) { if(n<=2) return n; int pre2=1,pre1=2,result=1; for(int i=3;i<=n;i++){ result=pre1+pre2; pre2=pre1; pre1=result; } return result; }…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 题目地址 https://www.nowcoder.com/practice/22243d016f6b47f2a6928b4313c85387?tpId=13&tqId=11162&rp=1&ru=/ta/coding-interviews&qru=/ta/coding-interviews/question-ranking 思路 当n=1时,结果为1:…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   思路 首先想到的解决方案是根据普通跳台阶题目改编,因为可以跳任意级,所以要加上前面台阶的所有可能,最后再加上可以一步跳上最后一阶的可能. public class Solution { public int JumpFloorII(int target) { if (target == 1) return 1; if (target == 2) return 2; //…
一.题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路 a.如果两种跳法,1阶或者2阶,那么假定第一次跳的是一阶,那么剩下的是n-1个台阶,跳法是f(n-1); b.假定第一次跳的是2阶,那么剩下的是n-2个台阶,跳法是f(n-2) c.由a\b假设可以得出总跳法为: f(n) = f(n-1) + f(n-2) d.然后通过实际的情况可以得出:只有一阶的时候 f(1) = 1 ,只有两阶的时候可以有 f(2) = 2 e.可以发现最终得出…
一.题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.思路: f(n)=f(n-1)+f(n-2)+...+f(0),f(1)=1,f(0)=1,=>f(n)=2*f(n-1) 三.代码:    …
 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. [思路1]每个台阶都有跳与不跳两种可能性(最后一个台阶除外),最后一个台阶必须跳.所以共用2^(n-1)中情况. class Solution { public: int jumpFloorII(int number) { <<--number; //1左移number-1位,即2的number-1次幂 //return pow(2, number - 1); } };…
一.题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 二.输入描述 n级台阶 三.输出描述 一共有多少种不同的跳法 四.牛客网提供的框架 class Solution { public: int jumpFloorII(int number) { } }; 五.解题思路 使用矩阵保存状态,后面的由前面的推导 六.代码 class Solution { public: int jumpFloorII(int number) {…
1. 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 2. 思路和方法 青蛙每一次跳跃只有两种选择:一是再跳1级阶梯到达第n级阶梯,此时小青蛙处于第n-1级阶梯:或者再跳2级阶梯到达第n级阶梯,此时小青蛙处于n-2级阶梯.于是,n级阶梯的跳法总是依赖于前n-1级阶梯的跳法总数f(n-1)和前n-2级阶梯的跳法总数f(n-2).因为只有两种可能性,所以,f(n)=f(n-1)+f(n-2): 递推公式f(n)=f(n…
题目: 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 考点: 递归和循环 分析: 台阶数 跳法 1 1 2 2 3 4 4 8 5 16 6 32 7 64 8 128 ... ... 归纳:f(n)=2*f(n-1); 代码实现: function jumpFloorII(n) { // write code here var fb = [1, 2]; for (var i = 2; i <= n; i++) { fb.push…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 思路:由于青蛙每次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级,故除了第target阶台阶必须要跳之外,其余的所有台阶既可以跳,也可以不跳,即跳法次数为2^(target-1). public int JumpFloorII(int target) { return (int)Math.pow(2,target-1); }…
题目地址:https://www.nowcoder.com/ta/coding-interviews 题目描述: 一只青蛙一次可以跳上1级台阶,也可以跳上2级--它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 解题方法 数学归纳法可以得出这个题的结果是2的n-1次方. 来自牛客网的回答: 链接:https://www.nowcoder.com/questionTerminal/22243d016f6b47f2a6928b4313c85387 来源:牛客网 关于本题,前提是n个台阶…
跳台阶是斐波那契数列的一个典型应用,其思路如下: # -*- coding:utf-8 -*- class Solution: def __init__(self): self.value=[0]*50 def jumpFloor(self, number): # write code here self.value[0]=1 self.value[1]=2 for i in range(2,number): self.value[i]=self.value[i-1]+self.value[i-…
C++ class Solution { public: int jumpFloorII(int n) { <<--n; } }; 推导: 关于本题,前提是n个台阶会有一次n阶的跳法.分析如下: f(1) = 1 f(2) = f(2-1) + f(2-2)         //f(2-2) 表示2阶一次跳2阶的次数. f(3) = f(3-1) + f(3-2) + f(3-3) ... f(n) = f(n-1) + f(n-2) + f(n-3) + ... + f(n-(n-1)) +…
剑指 Offer 09. 用两个栈实现队列 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,deleteHead 操作返回 -1 )   示例 1: 输入:["CQueue","appendTail","deleteHead","deleteHead"][[],[3],[],[]]输出:[nul…
##225. 用队列实现栈 如题 ###题解 在push时候搞点事情:push时入队1,在把队2的元素一个个入队1,再交换队2和队1,保持队1除pushguocheng 始终为空. ###代码 class MyStack { private Queue<Integer> q1; private Queue<Integer> q2; /** Initialize your data structure here. */ public MyStack() { q1=new Linked…
剑指 Offer 09. 用两个栈实现队列 题目链接 class CQueue { private Stack<Integer> sta1; private Stack<Integer> sta2; public CQueue() { sta1 = new Stack<>(); sta2 = new Stack<>(); } public void appendTail(int value) { while(!sta1.empty()){ sta2.push…
目录 题目 思路 代码 复杂度分析 题目 剑指 Offer 09. 用两个栈实现队列 思路 刚开始想的是用stack1作为数据存储的地方,stack2用来作为辅助栈,如果添加元素直接push入stack1,如果删除元素,把stack1中的n-1个给pop到stack2中,然后剩下一个直接pop掉,然后再把stack2中的元素给在倒回去,虽然可以实现,但是速度会很慢,因此有了另一个思路 stack1用来添加专门元素,stack2用来专门删除元素,逻辑是这样子的: 添加元素直接push到stack1…
剑指 Offer 09. 用两个栈实现队列 用两个栈实现一个队列.队列的声明如下,请实现它的两个函数 appendTail 和 deleteHead ,分别完成在队列尾部插入整数和在队列头部删除整数的功能.(若队列中没有元素,deleteHead 操作返回 -1 ) class CQueue { Stack<Integer> stackA, stackB; public CQueue() { stackA = new Stack<Integer>(); stackB = new S…
原创博文,转载请注明出处! # 本文为牛客网<剑指offer>刷题笔记 1.题目 # 用两个栈实现队列的插入和删除操作 2.思路 栈服从先入后出的原则处理数据,队列服从先入先出的原则处理数据.使用两个”先入后出“的栈实现的“先入先出”的队列. 举例分析两个栈模拟队列插入和删除的过程: 插入操作--元素a插入到stack1,此时stack1中的元素有{a},stack2为空.再压入b和c到stack1,此时stack1的元素有{a,b,c},其中c位于栈顶,而stack2仍然是空的. 删除操作-…
题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. /* f(n-1) = f(n-2) + f(n-3) + ... + f(0) f(n) = f(n-1) + f(n-2) + ... + f(0) f(n) - f(n-1) = f(n-1) f(n) = 2*f(n-1) */ public class Solution { public int JumpFloorII(int target) { return (i…