NLP之电影评分数据的情感分析】的更多相关文章

1.基于词袋模型的逻辑回归情感分类 # coding: utf-8 import re import numpy as np import pandas as pd from bs4 import BeautifulSoup from sklearn.feature_extraction.text import CountVectorizer from sklearn.metrics import confusion_matrix from sklearn.linear_model import…
一 安装与介绍 1.1 概述 SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典.注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode. 1.2 特点 # s as SnowNLP(text) 1) s.words 词语 2…
英文原文地址:https://districtdatalabs.silvrback.com/modern-methods-for-sentiment-analysis 转载文章地址:http://datartisan.com/article/detail/48.html 情感分析是一种常见的自然语言处理(NLP)方法的应用,特别是在以提取文本的情感内容为目标的分类方法中.通过这种方式,情感分析可以被视为利用一些情感得分指标来量化定性数据的方法.尽管情绪在很大程度上是主观的,但是情感量化分析已经有…
使用Spark MLlib进行情感分析             使用Spark MLlib进行情感分析 一.实验说明 在当今这个互联网时代,人们对于各种事情的舆论观点都散布在各种社交网络平台或新闻提要中.我们可以在移动设备或是个人PC上轻松地发布自己的观点.对于这种网上海量分布地数据,我们可以利用文本分析来挖掘各种观点.如下图中,CognoviLabs利用Twitter上人们发布对于美国大选两个候选人的推特,进行情感分析的结果.从这张图我们也可以直观地感受到民意所向(此图发表日期为10月10日,…
1. 什么是情感分析(别名:观点提取,主题分析,情感挖掘...) 应用: 1)正面VS负面的影评(影片分类问题) 2)产品/品牌评价: Google产品搜索 3)twitter情感预测股票市场行情/消费者信心 2. 目的 利用机器提取人们对某人或事物的态度,从而发现潜在的问题用于改进或预测. 这里我们所说的情感分析主要针对态度(attitude). 注:Scherer 情感状态类型主要可以分为: 情绪(emotion):有一定原因引发的同步反应.例如悲伤(sadness),快乐(joy) 心情(…
前言 这几天持续摆烂了几天,原因是我自己对于Kaggle电影评论情感分析的这个赛题敲出来的代码无论如何没办法运行,其中数据变换的维度我无法把握好,所以总是在函数中传错数据.今天痛定思痛,重新写了一遍代码,终于成功. 从国籍分类入手 在这个题目之前,给了一个按照姓名分类国籍的写法 https://www.bilibili.com/video/BV1Y7411d7Ys?p=13 按照这个写法我来写这个赛题,代码以及注释如下 ''''''''' 构建一个RNN分类器 任务:一个名称分类器,根据输入的名…
在上篇实现了电影详情和短评数据的抓取.到目前为止,已经抓了2000多部电影电视以及20000多的短评数据. 数据本身没有规律和价值,需要通过分析提炼成知识才有意义.抱着试试玩的想法,准备做一个有关情感分析方面的统计,看看这些评论里面的小伙伴都抱着什么态度来看待自己看过的电影,怀着何种心情写下的短评. 鉴于爬取的是短评数据,少则10来个字,多则百来个字,网上查找了下,发现Google开源的Word2Vec比较合适,于是今天捣鼓了一天,把自己遇到的问题和运行的结果在这里做个总结. Word2Ve是g…
情感分析简介   文本情感分析(Sentiment Analysis)是自然语言处理(NLP)方法中常见的应用,也是一个有趣的基本任务,尤其是以提炼文本情绪内容为目的的分类.它是对带有情感色彩的主观性文本进行分析.处理.归纳和推理的过程.   本文将介绍情感分析中的情感极性(倾向)分析.所谓情感极性分析,指的是对文本进行褒义.贬义.中性的判断.在大多应用场景下,只分为两类.例如对于"喜爱"和"厌恶"这两个词,就属于不同的情感倾向.   本文将详细介绍如何使用深度学习…
目录 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 NLP相关的文本预处理 浅谈NLP 文本分类/情感分析 任务中的文本预处理工作 前言 之所以心血来潮想写这篇博客,是因为最近在关注NLP文本分类这类任务中的文本预处理工作,想总结一下自己的所学所想,老规矩,本博文记载仅供备忘与参考,不具备学术价值,本文默认使用python3编程(代码能力是屎山级别的,请谅解),默认文本为英文,代码主要使用Pytorch(博主老笨蛋了,之前一直执迷不悟用Keras,现在刚刚开始用torch,怎么说…
仔细看的话,会发现之前的词频分析并没有什么卵用...文本分析真正的大哥是NLP,不过,这个坑太大,小白不大敢跳...不过还是忍不住在坑边上往下瞅瞅2333. 言归正传,今天刚了解到boson公司有python关于自然语言处理的API,于是试着用了一下,官方文档很不错,简单明了.首先是pip install bosonnlp.下面是一些简单应用,其实就是改一点官方的例子Orz...密钥的话,我的不给看(因为有请求次数限制的...),自己在这里注册一下就有啦. # -*- coding: utf-8…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:情感分析中对文本处理的数据的小技巧要求比较高,笔者在学习时候会为一些小技巧感到头疼不已. 主要包括以下内容: 1.批量读取txt字符文件(导入.文本内容逐行读取.加入文档名字). 2.文本清洗(一级清洗,去标点:二级清洗去内容:三级清洗,去停用词) 3.词典之间匹配(有主键join.词库匹配%in%) 4.分词之后档案id+label…
近期老师给我们安排了一个大作业,要求根据情感词典对微博语料进行情感分析.于是在网上狂找资料,看相关书籍,终于搞出了这个任务.现在做做笔记,总结一下本次的任务,同时也给遇到有同样需求的人,提供一点帮助. 1.情感分析含义 情感分析指的是对新闻报道.商品评论.电影影评等文本信息进行观点提取.主题分析.情感挖掘.情感分析常用于对某一篇新闻报道积极消极分析.淘宝商品评论情感打分.股评情感分析.电影评论情感挖掘.情感分析的内容包括:情感的持有者分析.态度持有者分析.态度类型分析(一系列类型如喜欢(like…
这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶斯公式,计算出…
摘要 这篇短文的目的是分享我这几天里从头开始学习Python爬虫技术的经验,并展示对爬取的文本进行情感分析(文本分类)的一些挖掘结果. 不同于其他专注爬虫技术的介绍,这里首先阐述爬取网络数据动机,接着以豆瓣影评为例介绍文本数据的爬取,最后使用文本分类的技术以一种机器学习的方式进行情感分析.由于内容覆盖面巨大,无法详细道尽,这篇文章旨在给那些对相关领域只有少量或者没有接触的人一个认知的窗口,希望激发读者自行探索的兴趣. 以下的样本代码用Pyhton写成,主要使用了scrapy, sklearn两个…
C#编程实现 这篇文章做了什么 朴素贝叶斯算法是机器学习中非常重要的分类算法,用途十分广泛,如垃圾邮件处理等.而情感分析(Sentiment Analysis)是自然语言处理(Natural Language Progressing)中的重要问题,用以对文本进行正负面的判断,以及情感度评分和意见挖掘.本文借助朴素贝叶斯算法,针对文本正负面进行判别,并且利用C#进行编程实现. 不先介绍点基础? 朴素贝叶斯,真的很朴素 朴素贝叶斯分类算法,是一种有监督学习算法,通过对训练集的学习,基于先验概率与贝叶…
前言:本文主要涉及知识点包括新浪微博爬虫.python对数据库的简单读写.简单的列表数据去重.简单的自然语言处理(snowNLP模块.机器学习).适合有一定编程基础,并对python有所了解的盆友阅读. 甩锅の声明 1.本数据节选自新浪热门微博评论,不代表本人任何观点 2.本人不接受任何非技术交流类批评指责(夸我可以) 3.本次分析结果因技术问题存在一定误差(是引入的包的问题,不是我的) 4.本次选取热门微博为一个月以前的(翻译一下:热点已经冷了,我只是个写教程的) 4.顶锅盖逃 继上次更完"国…
转载自:https://www.ibm.com/developerworks/cn/cognitive/library/cc-1606-spark-seniment-analysis/index.html IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码被改造.第三,认知计算的出现.其中,认知计算可以: 通过感知与互动,理解非结构化数据 通过生成…
Spark 的情感分析 本文描述了基于 Spark 如何构建一个文本情感分析系统.文章首先介绍文本情感分析基本概念和应用场景,其次描述采用 Spark 作为分析的基础技术平台的原因和本文使用到技术组件,然后介绍基于 Spark 如何构建文本情感分析系统,最后提出几种提高正确率的方法. 9 评论   IBM 公司在 2015 年对外宣告了一个新的科技和商务时代的来临—认知时代.这个巨大的转变,来自 IBM 对技术和商业领域的三个重要的洞察力[1].第一,这个世界被数据所充斥.第二,这个世界通过代码…
一直想做个这样的爬虫:定制自己的种子,爬取想要的数据,做点力所能及的小分析.正好,这段时间宝宝出生,一边陪宝宝和宝妈,一边把自己做的这个豆瓣电影爬虫的数据采集部分跑起来.现在做一个概要的介绍和演示. 动机 采集豆瓣电影数据包括电影详情页数据和电影的短评数据. 电影详情页如下图所示 需要保存这些详情字段如导演.编剧.演员等还有图中右下方的标签. 短评页面如下图所示 需要保存的字段有短评所属的电影名称,每条评论的详细信息如评论人名称.评论内容等. 数据库设计 有了如上的需求,需要设计表,其实很简单,…
Part5情感分析 这是本系列的最后一篇文章,该.事实上这种单一文本挖掘的每一个部分进行全部值获取水落石出细致的研究,0基础研究阶段.用R里面现成的算法,来实现自己的需求,当然还參考了众多网友的智慧结晶,所以也想把我的收获总结出来分享给大家,希望也能像我一样在看大家的分享时得到自己的启示. 网上翻了下中文文本情感分析的一些文章,再回忆了一下我自己做情感分析的方法,认为我的想法真的是简单粗暴直接. 这是一篇介绍中文文本情感分析倾向的论文.http://wenku.baidu.com/link?ur…
每每以为攀得众山小,可.每每又切实来到起点,大牛们,缓缓脚步来俺笔记葩分享一下吧,please~ --------------------------- 笔者寄语:词典型情感分析对词典要求极高,词典中的词语需要人工去选择,但是这样的选择会很有目标以及针对性.本文代码大多来源于<数据挖掘之道>的情感分析章节.本书中还提到了监督算法式的情感分析,可见博客: R语言︱情感分析-基于监督算法R语言实现笔记. 可以与博客 R语言︱词典型情感分析文本操作技巧汇总(打标签.词典与数据匹配等)对着看. 词典型…
SnowNLP是国人开发的python类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典.注意本程序都是处理的unicode编码,所以使用时请自行decode成unicode.MIT许可下发行.其 github 主页我自己修改了上文链接中的python代码并加入些许注释,以方便你的理解: f…
一,前提准备         1.R语言包:ggplot2包(绘图),recommenderlab包,reshape包(数据处理)         2.获取数据:大家可以在明尼苏达州大学的社会化计算研究中心官网上面下载这些免费数据集,网站链接为http://grouplens.org/datasets/movielens/,也可以通过网盘下载https://yunpan.cn/Oc6R9apvCnVXGc访问密码 e1af.这里包含了数据集和数据说明,该数据集是由943位用户对1682部电影的一…
一.简介 实例: 电影评论.产品评论是positive还是negative 公众.消费者的信心是否在增加 公众对于候选人.社会事件等的倾向 预测股票市场的涨跌 Affective States又分为: emotion:短暂的情感,比如生气.伤心.joyful开心.害怕.羞愧.骄傲等 mood:漫无原因的低强度长时间持续的主观感觉变化,比如cheerful,gloomy阴郁.irritable急躁. interpersonal stance:人际关系中对另一个人的立场,比如友好的.友善的 atti…
现在自然语言处理用深度学习做的比较多,我还没试过用传统的监督学习方法做分类器,比如SVM.Xgboost.随机森林,来训练模型.因此,用Kaggle上经典的电影评论情感分析题,来学习如何用传统机器学习方法解决分类问题. 通过这个情感分析的题目,我会整理做特征工程.参数调优和模型融合的方法,这一系列会有四篇文章.这篇文章整理文本特征工程的内容. 文本的特征工程主要包括数据清洗.特征构造.降维和特征选择等. 首先是数据清洗,比如去停用词.去非字母汉字的特殊字符.大写转小写.去掉html标签等. 然后…
使用百度EasyDL定制化训练和服务平台有一段时间了,越来越能体会到EasyDL的易用性.在此之前我也接触过不少的深度学习平台,如类脑平台.Google的GCP深度学习平台.AWS深度学习平台,但我觉得EasyDL在模型训练和使用上给了开发者更大的辅助:开发者或者用户只需要提交对应格式的训练文件,即可开始深度学习之旅.我的专业是自然语言处理中的情感分析,用的语料主要是电商评价文本数据,下面简单介绍一下情感分析任务. 情感分析(Sentiment Analysis,简称SA)综合了自然语言处理(N…
1. 任务分析及说明 目标网站:https://movie.douban.com/tag/#/ 抓取豆瓣电影上,中国大陆地区,相关电影数据约1000条:数据包括:电影名称.导演.主演.评分.电影类型.语言.上映时间.短评top20等数据: 1.1 Fiddler抓包要点分析: 请求均为GET请求:拼接后的URL为是https://movie.douban.com/j/new_search_subjects?sort=U&range=0,10&tags=电影&start=0 其中,r…
http://c.biancheng.net/view/1938.html 前面我们介绍了如何将卷积网络应用于图像.本节将把相似的想法应用于文本. 文本和图像有什么共同之处?乍一看很少.但是,如果将句子或文档表示为矩阵,则该矩阵与其中每个单元是像素的图像矩阵没有什么区别. 接下来的问题是,如何能够将文本表示为矩阵?好吧,这很简单:矩阵的每一行都是一个表示文本的向量.当然,现在需要定义一个基本单位.一个简单方法是将基本单位表示为字符.另一种做法是将一个单词看作基本单位,将相似的单词聚合在一起,然后…
本文内容主要参考GitHub:https://github.com/isnowfy/snownlp what's the SnowNLP SnowNLP是一个python写的类库,可以方便的处理中文文本内容,是受到了TextBlob的启发而写的,由于现在大部分的自然语言处理库基本都是针对英文的,于是写了一个方便处理中文的类库,并且和TextBlob不同的是,这里没有用NLTK,所有的算法都是自己实现的,并且自带了一些训练好的字典.注意本程序都是处理的unicode编码,所以使用时请自行decod…
题外话+ 大家好啊,最近自己在做一个属于自己的博客网站(准备辞职回家养老了,明年再战)在家里 琐事也很多, 加上自己 一回到家就懒了(主要是家里冷啊! 广东十几度,老家几度,躲在被窝瑟瑟发抖,) 由于在建博客,也会遇到一些问题,我目前的博客发展就是 在创建博客的过程中, 把遇到的问题及解决方法  给说明出来,python 呢, 我也几周没玩了,,估计又忘记了(哎)好烦 我看了一下, 博客最新文章是讲python 的 爬去图片的 我今天说说爬去豆瓣数据写入(我这里写入 txt) 爬取豆瓣电影首页数…