BZOJ2655 Calc 参考 题意: 给定n,m,mod,问在对mod取模的背景下,从[1,m]中选出n个数相乘可以得到的总和为多少. 思路: 首先可以发现dp方程 ,假定dp[m][n]表示从[1 ~ m]中选出n个数乘积的和, 那么dp[m][n] = dp[m-1][n] + dp[m-1][n-1]*m*n. 但是这道题的m有1e9那么大,不能dp完,不过我们可以发现,dp[x][n] 是关于x的2*n多项式, 所以,我们只要先求出0~2*n的dp值,再用拉格朗日插值法算出dp[m]…
[题意]一个序列$a_1,...,a_n$合法当且仅当它们都是[1,A]中的数字且互不相同,一个序列的价值定义为数字的乘积,求所有序列的价值和.n<=500,A<=10^9,n+1<A<mod<=10^9,mod是素数. [算法]动态规划+拉格朗日插值 [题解]这道题每个数字的贡献和序列选了的数字积关系密切,所以不能从序列角度考虑(和具体数字关系不大). 设$f_{n,m}$表示前n个数字(值域)中取m个数字的答案,那么枚举取或不取数字n,取n时乘n且有j个位置可以插入,即:…
考虑暴力dp:f[i][j]表示i个数值域1~j时的答案.考虑使其值域++,则有f[i][j]=f[i][j-1]+f[i-1][j-1]*i*j,边界f[i][i]=i!*i!. 注意到值域很大,考虑能不能在这一维上优化.完全不会证地有f[i][j]是一个关于j的2i次多项式.那么dp出一部分后就可以直接拉格朗日插值求出多项式,代入即可. #include<iostream> #include<cstdio> #include<cmath> #include<c…
题意 题目链接 Sol 首先不难想到一个dp 设\(f[i][j]\)表示选了\(i\)个严格递增的数最大的数为\(j\)的方案数 转移的时候判断一下最后一个位置是否是\(j\) \[f[i][j] = f[i][j - 1] + f[i - 1][j - 1] * j\] for(int i = 0; i <= A; i++) f[0][i] = 1; for(int i = 1; i <= N; i++) for(int j = 1; j <= A; j++) f[i][j] = a…
2655: calc Time Limit: 30 Sec  Memory Limit: 512 MBSubmit: 428  Solved: 246[Submit][Status][Discuss] Description 一个序列a1,...,an是合法的,当且仅当: 长度为给定的n. a1,...,an都是[1,A]中的整数. a1,...,an互不相等. 一个序列的值定义为它里面所有数的乘积,即a1a2...an. 求所有不同合法序列的值的和. 两个序列不同当且仅当他们任意一位不一样.…
题目 P4463 [国家集训队] calc 集训队的题目真是做不动呀\(\%>\_<\%\) 朴素方程 设\(f_{i,j}\)为前\(i\)个数值域\([1,j]\),且序列递增的总贡献,则有: \[f_{i,j}=f_{i-1,j-1}*j+f{i,j-1}\] 由于递增序列可以全排列的:\(ans=f_{n,A}×n!\) 时间复杂度\(O(nA)\) 证明一 设\(f_{i,j}\)为关于\(j\)的\(2i\)次多项式,则\(f_{i-1,j-1}*j\)为关于\(j\)的2i-1次…
http://www.lydsy.com/JudgeOnline/problem.php?id=2655 f[i][j] 表示[1,i]里选严格递增的j个数,序列值之和 那么ans=f[A][n] *  n! A太大,那么用拉格朗日插值法 f[i][j] 是关于i的2j次多项式,证明如下: %%%rqy #include<cstdio> using namespace std; int mod; ][]; ],y[],tot; int Pow(int a,int b) { ; ) ) res=…
本文源于一次课题作业,部分自己写的,部分借用了网上的demo 牛顿迭代法(1) x=1:0.01:2; y=x.^3-x.^2+sin(x)-1; plot(x,y,'linewidth',2);grid on;%由图像可知 根在1.05到1.15之间 syms x s0=diff(x^3-x^2+sin(x)-1,x,1); % 得到s0= cos(x) - 2*x + 3*x^2 % 迭代方程为 y=x-(x.^3-x.^2+sin(x)-1)/(cos(x) - 2.*x + 3*x.^2…
插值法的伟大作用我就不说了.... 那么贴代码? 首先说一下下面几点: 1. 已有的数据样本被称之为 "插值节点" 2. 对于特定插值节点,它所对应的插值函数是必定存在且唯一的(关于这个的证明我暂时不说了,如果哪天我回头看看我的blog有点寒碜,我再再补上) 也就是说对于同样的插值样本来说,用不同方法求得的插值函数本质上其实是一样的. 3. 拉格朗日插值法依赖于每个插值节点对应的插值基函数,也就是说每个插值节点都有对应的插值基函数. 4. 拉格朗日插值函数最终由所有插值节点中每个插值节…
开始学习MATLAB(R和Python先放一放...),老师推荐一本书,看完基础就是各种算法...首先是各种插值.先说拉格朗日插值法,这原理楼主完全不懂的,查的维基百科,好久才看懂.那里讲的很详细,这里就不在赘述了.一般看这个范例,在回头看公式就比较容易理解. 关于MATLAB的实现,查了很多资料,下面的版本最好理解. %lagran1.m %求拉格朗日插值多项式和基函数 %输入的量:n+1个节点(x_i,y_i)(i = 1,2, ... , n+1)横坐标向量X,纵坐标向量Y %输出的量:n…