spark2.1出来了,想玩玩就搭了个原生的apache集群,但在standalone模式下没有任何问题,基于apache hadoop 2.7.3使用spark on yarn一直报这个错.(Java 8) 报错日志如下: Warning: Master yarn-client is deprecated since 2.0. Please use master "yarn" with specified deploy mode instead. // :: INFO spark.S…
spark 2.1.1 系统中希望监控spark on yarn任务的执行进度,但是监控过程发现提交任务之后执行进度总是10%,直到执行成功或者失败,进度会突然变为100%,很神奇, 下面看spark on yarn任务提交过程: spark on yarn提交任务时会把mainClass修改为Client childMainClass = "org.apache.spark.deploy.yarn.Client" spark-submit过程详见:https://www.cnblog…
spark用yarn提交任务会报ERROR cluster.YarnClientSchedulerBackend: YARN application has exited unexpectedly with state UNDEFINED! Check the YARN application logs for more details.ERROR cluster.YarnClientSchedulerBackend: Diagnostics message: Shutdown hook cal…
spark on yarn通过--deploy-mode cluster提交任务之后,应用已经在yarn上执行了,但是spark-submit提交进程还在,直到应用执行结束,提交进程才会退出,有时这会很不方便,并且不注意的话还会占用很多资源,比如提交spark streaming应用: 最近发现spark里有一个配置可以修改这种行为,提交任务的时候加长一个conf就可以 --conf spark.yarn.submit.waitAppCompletion=false org.apache.spa…
无论用YARN cluster和YARN client来跑,均会出现如下问题. [spark@master spark-1.6.1-bin-hadoop2.6]$ jps 2049 NameNode 2706 Jps 2372 ResourceManager 2660 Master 2203 SecondaryNameNode [spark@master spark-1.6.1-bin-hadoop2.6]$ $SPARK_HOME/bin/spark-submit \ > --master y…
一.Client模式 提交命令: ./spark-submit --master yarn --class org.apache.examples.SparkPi ../lib/spark-examples-1.6.0-hadoop2.7.3.jar 1000 ./spark-submit --master yarn-client --class org.apache.examples.SparkPi ../lib/spark-examples-1.6.0-hadoop2.7.3.jar 100…
Application ID is application_1481285758114_422243, trackingURL: http://***:4040Exception in thread "main" org.apache.hadoop.mapred.InvalidInputException: Input path does not exist: hdfs://mycluster-tj/user/engine_arch/data/mllib/sample_libsvm_d…
报错信息如上,具体是运行FusionInsight给的样例SparkPi,在local环境下是可以的,但是如果以yarn-client模式就会卡住,然后120s以后超时,其实以yarn-cluster模式也是会报错的,开始在spark-default-conf 中加上了driver的spark.driver.host = $客户端IP,没用,将服务器各个主机免密登陆,没用,再将客户端的ip添加到主机的hosts文件中,使得hostname就可以直接访问,没用,再将客户端机器的防火墙关闭,host…
不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPARK_WORKER_MERMORY=1g  (在spark-env.sh) export JAVA_HOME=/usr/local/jdk/jdk1..0_60 (必须写) export SCALA_HOME=/usr/local/scala/scala- (必须写) export HADOOP_H…
不多说,直接上干货! 问题详情 电脑8G,目前搭建3节点的spark集群,采用YARN模式. master分配2G,slave1分配1G,slave2分配1G.(在安装虚拟机时) export SPARK_WORKER_MERMORY=1g  (在spark-env.sh) export JAVA_HOME=/usr/local/jdk/jdk1.8.0_60 (必须写) export SCALA_HOME=/usr/local/scala/scala-2.10.5 (必须写) export H…