UVA 11427 (概率DP+期望)】的更多相关文章

题目链接: http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=35396 题目大意:每晚打游戏.每晚中,赢一局概率p,最多玩n局,如果最后不能保证胜率大于p,则从此不玩.问打游戏的天数的期望. 解题思路: 首先分析每天晚上的. 设f[i][j]为前i天,已经赢j局的概率. 由全概率公式,那么当天晚上完蛋的概率q=f[n][0]+f[n][1]+.....f[n][终止条件]. 至于为什么从完蛋(输)的角度考虑,主要是由于n局的…
题目链接:Coins Description Alice and Bob are playing a simple game. They line up a row of nn identical coins, all with the heads facing down onto the table and the tails upward. For exactly mm times they select any kk of the coins and toss them into the…
luogu P6835 概率DP 期望 洛谷 P6835 原题链接 题意 n + 1个节点,第i个节点都有指向i + 1的一条单向路,现在给他们添加m条边,每条边都从一个节点指向小于等于自己的一个节点,现在从1号点开始走,每次等概率地选择出边,问到达n+1的步数期望 思路 用 \(F_{i,j}\) 代表从i到j的期望步数 由于期望的线性性质,所以 \(F_{i,k} + F_{k,j} = F_{i,j}\) 所以我们算出每个 \(F_{i,i+1}\) 即可 对于当前节点i,出度为 \(d_…
表示对概率和期望还不是很清楚定义. 目前暂时只知道概率正推,期望逆推,然后概率*某个数值=期望. 为什么期望是逆推的,例如你求到某一个点的概率我们可以求得,然后我们只要运用dp从1~n每次都加下去就好了,这样求出来的就是最后的概率.那么期望呢,就是这个概率*数值就行了.但是有时候这么绕来绕去太麻烦了,我们干脆就逆过来.然后我们发现,根据期望的定义,逆过来以后反正做结果并没有太大的改变,dp从n~1就可以了,并且每次都加上数值,然后在for的途中,这个数值是会不断的乘以概率的,所以期望适合用逆推的…
Problem Description Akemi Homura is a Mahou Shoujo (Puella Magi/Magical Girl). Homura wants to help her friend Madoka save the world. But because of the plot of the Boss Incubator, she is trapped in a labyrinth called LOOPS. The planform of the LOOPS…
题目链接: http://acm.zju.edu.cn/onlinejudge/showProblem.do?problemId=4808 题目大意: 有n条路,选每条路的概率相等,初始能力值为f,每条路通过的难度值为ci,当能力值大于某条路A的难度值b时,能够成功逃离,花费时间ti,小于等于时,不能逃离但能力值增加b. 给定初始的能力值,求成功逃离的期望. 解题思路: 简单期望dp. 设dp[i]表示能力值为i时,逃离的期望值. 对于每条路j,当i>c[j]时,成功逃离+ti[j],否则能力值…
题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=4035 题目意思: 有n个房间,有n-1条通道连接这n个房间(每两个房间之间有且只有一条路,所以实际上就是一棵树),在每个房间中,有三种选择要么被杀则回到第一个房间,概率为ki,要么从出口逃离概率为ei,要么通过通道到达其他的房间. 解题思路: 好题. 状态转移方程很好想,但是求的时候有技巧,不能直接用高斯消元来求(n有10000)肯定会超时.发现知,此题是在一棵树上转移,所以可以借助树的特点,分成…
Dudu is a very starving possum. He currently stands in the first shelf of a fridge. This fridge iscomposed of N shelves, and each shelf has a number Qi (1 ≤ i ≤ N) of food. The top shelf, whereDudu is, is identified by the number 1, and the lowest is…
题目大意:有个人每天要去公司上班,每次会经过N条河,家和公司的距离为D,默认在陆地的速度为1,给出N条河的信息,包括起始坐标p,宽度L,以及船的速度v.船会往返在河的两岸,人到达河岸时,船的位置是随机的(往返中).问说人达到公司所需要的期望时间. 考虑每条河的过河时间: $t_{min} =\frac{L}{V}$,  $t_{max} =\frac{3L}{V}$ 由于每种距离的概率都是相等的,我们可以认为时间的期望就是 $(t_{min}+t_{max})/2$. Code: #includ…
还是逆推,如果遇到跳板直接继承目标地的期望即可 #include<bits/stdc++.h> using namespace std; #define maxn 200005 double dp[maxn]; int n,m,nxt[maxn]; int main(){ while(scanf("%d%d",&n,&m)&&n){ memset(nxt,,sizeof nxt); memset(dp,,sizeof dp); ;i<=…