C - Prime number or not Time Limit:2000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Submit Status Practice FZU 1649 Description Your task is simple.Give you a number N, you should judge whether N is a prime number or not. Input There…
1552: Friends Time Limit: 3 Sec  Memory Limit: 256 MBSubmit: 723  Solved: 198[Submit][Status][Web Board] Description On an alien planet, every extraterrestrial is born with a number. If the sum of two numbers is a prime number, then two extraterrestr…
题意: 给出n个数,判断它是不是素数. SOL: 米勒拉宾裸题,思想方法略懂,并不能完全理解,所以实现只能靠背模板.... 好在不是很长... Code: /*========================================================================== # Last modified: 2016-03-21 10:09 # Filename: miller-rabin.cpp # Description: =================…
题意:给定一个数,判断是不是素数. 析:由于数太多,并且太大了,所以以前的方法都不适合,要用米勒拉宾算法. 代码如下: #include <iostream> #include <cstdio> #include <algorithm> #include <queue> #include <vector> #include <cstring> #include <map> #include <cctype> u…
之前一直对于这个神奇的素性判定方法感到痴迷而又没有时间去了解.借着学习<信息安全数学基础>将素性这一判定方法学习一遍. 首先证明一下费马小定理. 若p为素数,且gcd(a, p)=1, 则有 a^(p-1) = 1 (mod p) 基于以下定理 若(a, p)=1,{x| (x, p)=1}为模p下的一个完全剩余系,则{ax| (x, p)=1}也为模p下的一个完全剩余系. 又{0, 1, 2, ... p-1}为模p下一个剩余系   因此有, {a*0, a*1, a*2, ... a*(p…
2018-03-12 17:22:48 米勒-拉宾素性检验是一种素数判定法则,利用随机化算法判断一个数是合数还是可能是素数.卡内基梅隆大学的计算机系教授Gary Lee Miller首先提出了基于广义黎曼猜想的确定性算法,由于广义黎曼猜想并没有被证明,其后由以色列耶路撒冷希伯来大学的Michael O. Rabin教授作出修改,提出了不依赖于该假设的随机化算法. 问题描述:对于大整数N,判断其是否为素数. 问题求解: 若N为偶数,直接返回false,若N是奇数,则进行以下几步进行判断: 将N -…
//我也忘了从哪找来的板子,不过对于2^63级的数据请考虑使用java内置的米勒拉宾算法. 1 #include <iostream> #include <string> #include <cstdio> #include <cmath> #include <cstring> #include <algorithm> #define range(i,a,b) for(int i=a;i<=b;++i) #define rera…
直接套用模板,以后接着用 这里还有一个素因子分解的模板 #include <map> #include <set> #include <stack> #include <queue> #include <cmath> #include <ctime> #include <vector> #include <cstdio> #include <cctype> #include <cstring&…
首先需要知道两个定理: 1: 费马小定理: 假如p是素数,且gcd(a,p)=1,那么 a(p-1)≡1(mod p). 2:二次探测定理:如果p是素数,x是小于p的正整数,且,那么要么x=1,要么x=p-1. 证明:这是显然的,因为相当于p能整除,也即p能整除(x+1)(x-1). 由于p是素数,那么只可能是x-1能被p整除(此时x=1) 或 x+1能被p整除(此时x=p-1). 接着 如果a^(n-1) ≡ 1 (mod n)成立,Miller-Rabin算法不是立即找另一个a进行测试,而是…
Problem Description Euler is a well-known matematician, and, among many other things, he discovered that the formulan^{2} + n + 41n2+n+41 produces a prime for 0 ≤ n < 400≤n<40. For n = 40n=40, the formula produces 16811681, which is 41 ∗ 4141∗41.Eve…