template <class T1, class T2>double Pearson(std::vector<T1> &inst1, std::vector<T2> &inst2) { if(inst1.size() != inst2.size()) { std::cout<<"the size of the vectors is not the same\n"; return 0; } size_t n=inst1.s…
参考资料 [1]<Spark MLlib 机器学习实践> [2]http://blog.csdn.net/u011239443/article/details/51752904 [3]线性代数-同济大学 [4]基于矩阵分解的协同过滤算法 https://wenku.baidu.com/view/617482a8f8c75fbfc77db2aa.html [5]机器学习的正则化 http://www.cnblogs.com/jianxinzhou/p/4083921.html [6]正则化方法…
Slope One 是一系列应用于 协同过滤的算法的统称.由 Daniel Lemire和Anna Maclachlan于2005年发表的论文中提出. [1]有争议的是,该算法堪称基于项目评价的non-trivial 协同过滤算法最简洁的形式.该系列算法的简洁特性使它们的实现简单而高效,而且其精确度与其它复杂费时的算法相比也不相上下. [2]. 该系列算法也被用来改进其它算法.[3][4]. 目录   [隐藏] 1 协同过滤简介及其主要优缺点2 Item-based协同过滤 和 过适3 电子商务…
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是机器学习专题的第29篇文章,我们来聊聊SVD在上古时期的推荐场景当中的应用. 推荐的背后逻辑 有没有思考过一个问题,当我们在淘宝或者是某东这类电商网站购物的时候.我们一进首页,就会看到首页展出了很多商品.这些商品往往质量很高,很吸引人,一旦逛起来可能就没个结束.那么问题来了,电商平台拥有那么多商品,它是怎么知道我们可能会喜欢什么样的商品的呢?这背后的逻辑是什么? 简单来说在这背后,平台端的算法做了两件事情,第一件事情是召回,第二件…
基本思想 基于用户的协同过滤算法是通过用户的历史行为数据发现用户对商品或内容的喜欢(如商品购买,收藏,内容评论或分享),并对这些喜好进行度量和打分.根据不同用户对相同商品或内容的态度和偏好程度计算用户之间的关系.在有相同喜好的用户间进行商品推荐.简单的说就是如果A,B两个用户都购买了x.y.z三本图书,并且给出了5星的好评.那么A和B就属于同一类用户.可以将A看过的图书w也推荐给用户B.   基于用户协同过滤算法的原理图 所以,协同过滤算法主要分为两个步骤: 1.寻找相似的用户集合: 2.寻找集…
协同过滤(Collaborative Filtering,CF)算法是一种常用的推荐算法,它的思想就是找出相似的用户或产品,向用户推荐相似的物品,或者把物品推荐给相似的用户.怎样评价用户对商品的偏好?可以有很多方法,如用户对商品的打分.购买.页面停留时间.保存.转发等等.得到了用户对商品的偏好,就可以给用户推荐商品.有两种方法:用户A喜欢物品1,商品2和物品1很相似,于是把物品2推荐给用户A:或者用户A和用户B很类似,B喜欢商品2,就将商品2推荐给用户A.所以协同过滤分为两类:基于用户的协同过滤…
Contents    1. 协同过滤的简介    2. 协同过滤的核心    3. 协同过滤的实现    4. 协同过滤的应用 1. 协同过滤的简介 关于协同过滤的一个最经典的例子就是看电影,有时候不知道哪一部电影是我们喜欢的或者评分比较高的,那 么通常的做法就是问问周围的朋友,看看最近有什么好的电影推荐.在问的时候,都习惯于问跟自己口味差不 多的朋友,这就是协同过滤的核心思想. 协同过滤是在海量数据中挖掘出小部分与你品味类似的用户,在协同过滤中,这些用户成为邻居,然后根据他 们喜欢的东西组织…
  基于用户的最近邻算法(User-Based Neighbor Algorithms),是一种非概率性的协同过滤算法,也是推荐系统中最最古老,最著名的算法. 我们称那些兴趣相似的用户为邻居,如果用户n相似于用户u,我们就说n是u的一个邻居.起初算法,对于未知目标的预测是根据该用户的相似用户的评分作出预测的. 本文中运用的是MovieLens数据集,关于这个数据集的介绍可以参看http://www.grouplens.org/node/73 算法主要包括两个步骤: (1). 找到与用户兴趣相似的…
Spark机器学习之协同过滤算法 一).协同过滤 1.1 概念 协同过滤是一种借助"集体计算"的途径.它利用大量已有的用户偏好来估计用户对其未接触过的物品的喜好程度.其内在思想是相似度的定义 1.2 分类 1.在基于用户的方法的中,如果两个用户表现出相似的偏好(即对相同物品的偏好大体相同),那就认为他们的兴趣类似.要对他们中的一个用户推荐一个未知物品, 便可选取若干与其类似的用户并根据他们的喜好计算出对各个物品的综合得分,再以得分来推荐物品.其整体的逻辑是,如果其他用户也偏好某些物品,…
J由于 Spark MLlib 中协同过滤算法只提供了基于模型的协同过滤算法,在网上也没有找到有很好的实现,所以尝试自己实现基于物品的协同过滤算法(使用余弦相似度距离) 算法介绍 基于物品的协同过滤算法是目前业界应用最多的算法,亚马逊网.Netflix.Hulu.YouTube 都使用该算法作为推荐系统的基础算法.算法核心思想是根据用户对物品的历史行为记录,先计算物品之间的相似度,得到与物品最相似的 TopN 个物品,再利用用户对物品的历史行为,将用户访问过的物品的相似物品推荐给用户.也就是说,…