(Problem 21)Amicable numbers】的更多相关文章

Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper d…
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... By converting each letter in a word to a number corresponding to its alphabetical position and…
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145: 1! + 4! + 5! = 1 + 24 + 120 = 145 Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it tu…
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 2520  7   8   9  1019  6   1   2  1118  5   4   3  1217 16 15 14 13 It can be verified that the sum of the numbers on the di…
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of positive numbers less than or equal to n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relative…
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square. 9 = 7 + 21215 = 7 + 22221 = 3 + 23225 = 7 + 23227 = 19 + 22233 = 31 + 212 It turns out that the conjecture was false. What…
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d  8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1…
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another. There are no arithmetic seq…
The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The first three consecutive numbers to have three distinct prime factors are: 644 = 2²  7  23 645 = 3  5  43 646 = 2  17  19. Find the first four consecutiv…
The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2. (Please note that the palindromic number, in either base, may not include le…