神经网络可以使用 torch.nn包构建. 现在你已经对autograd有所了解,nn依赖 autograd 定义模型并对其求微分.nn.Module 包括层,和一个返回 output 的方法 - forward(input). 例如,看看这个对数字图片进行分类的网络: convnet 这是一个简单的前馈网络.它接受输入,通过一层接一层,最后输出. 一个典型的神经网络训练过程如下: 定义神经网络,并包括一些可学习的参数(或权重) 通过输入数据集迭代 通过网络处理输入 计算损失(输出和真值的差距)…
Tensor是一种特殊的数据结构,非常类似于数组和矩阵.在PyTorch中,我们使用tensor编码模型的输入和输出,以及模型的参数. Tensor类似于Numpy的数组,除了tensor可以在GPUs或其它特殊的硬件上运行以加速运算.如果熟悉ndarray,那么你也会熟悉Tensor API.如果不是,跟随此快速API上手. import torch import numpy as np Tensor 初始化 Tensor可以通过多种途径初始化.看看下面的例子: 直接从数据中初始化 Tenso…
torch.autograd 是PyTorch的自动微分引擎,用以推动神经网络训练.在本节,你将会对autograd如何帮助神经网络训练的概念有所理解. 背景 神经网络(NNs)是在输入数据上执行的嵌套函数的集合.这些函数由参数(权重.偏置)定义,并在PyTorch中保存于tensors中. 训练NN需要两个步骤: 前向传播:在前向传播中(forward prop),神经网络作出关于正确输出的最佳预测.它使输入数据经过每一个函数来作出预测. 反向传播:在反向传播中(backprop),神经网络根…
你已经知道怎样定义神经网络,计算损失和更新网络权重.现在你可能会想, 那么,数据呢? 通常,当你需要解决有关图像.文本或音频数据的问题,你可以使用python标准库加载数据并转换为numpy array.然后将其转换为 torch.Tensor. 对于图像,例如Pillow,OpenCV 对于音频,例如scipy和librosa 对于文本,原生Python或基于Cython的加载,或NLTK和SpaCy 针对视觉领域,我们创建了一个名为 torchvision 的包,拥有用于ImageNet.C…
Tensors 1. construst matrix 2. addition 3. slice from __future__ import print_function import torch # construst a 5*3 matrix. # method 1 # x = torch.LongTensor(5, 3) x = torch.FloatTensor(5, 3) print(x) # method 2 x = torch.randn(5, 3) print(x) # get…
博客地址:http://www.cnblogs.com/daniel-D/p/5602254.html 新浪微博:http://weibo.com/u/2786597434 欢迎多多交流~ Main Idea 这篇论文的工作是讲 RNN 应用到推荐系统中,想法在于把一个 session 点击一系列 item 的行为看做一个序列,用来训练一个 RNN 模型.在预测阶段,把 session 已知的点击序列作为输入,用 softmax 预测该session下一个最有可能点击的item.论文想法虽然很朴…
Planar data classification with a hidden layer Welcome to the second programming exercise of the deep learning specialization. In this notebook you will generate red and blue points to form a flower. You will then fit a neural network to correctly cl…
Learn to build a neural network with one hidden layer, using forward propagation and backpropagation. 学习目标 Understand hidden units and hidden layers Be able to apply a variety of activation functions in a neural network. Build your first forward and…
1.以下哪一项是正确的?(检查所有适用的) (A,D,F,G) A.  a[2] 表示第二层的激活函数值向量. B. X 是一个矩阵, 其中每一行都是一个训练示例. C. a[2] (12) 表示第二训练样本在第十二层的激活函数值向量. D. X 是一个矩阵, 其中每一列都是一个训练样本. E. a4 [2] 是第二层的第4个训练样本的激活函数输出值 F. a[2] (12) 表示第十二训练样本在第二层激活函数值向量. G. a4[2]  是第二层第四个神经元的激活函数输出值 ---------…
如上图所示的两层神经网络, 单样本向量化:                                                                                 多样本向量化: for i=1 to 4: z[1](i) = W[1](i) x(i)  + b[1](i)                                       Z[1] = W[1] X+ b[1] (4,1)               (4,3)        (…