Bert实战---情感分类】的更多相关文章

1.情感分析语料预处理 使用酒店评论语料,正面评论和负面评论各5000条,用BERT参数这么大的模型, 训练会产生严重过拟合,,泛化能力差的情况, 这也是我们下面需要解决的问题; 2.sigmoid二分类 回顾在BERT的训练中Next Sentence Prediction中, 我们取出$[cls]$对应的那一条向量, 然后把他映射成1个数值并用$sigmoid$函数激活: $$\hat{y} = sigmoid(Linear(cls\_vector)) \quad \hat{y} \in (…
文章目录 0. BERT介绍 1. BERT配置 1.1. clone BERT 代码 1.2. 数据处理 1.2.1预训练模型 1.2.2数据集 训练集 测试集 开发集 2. 修改代码 2.1 加入新的处理类 2.2 处理类注册 3. 运行代码 4. 分类预测 4.1 修改参数, 进行预测 4.2 得到类别 5. 运行问题 5.1 出现内存不够 6. 源码 GITHUB 地址 0. BERT介绍 google 在2018年放出的大杀器, 作为当前NLP的最新技术,此模型在NLP的多个上游下游问…
2018年google推出了bert模型,这个模型的性能要远超于以前所使用的模型,总的来说就是很牛.但是训练bert模型是异常昂贵的,对于一般人来说并不需要自己单独训练bert,只需要加载预训练模型,就可以完成相应的任务.下面我将以情感分类为例,介绍使用bert的方法.这里与我们之前调用API写代码有所区别,已经有大神将bert封装成.py文件,我们只需要简单修改一下,就可以直接调用这些.py文件了. 官方文档 tensorflow版:点击传送门 pytorch版(注意这是一个第三方团队实现的)…
详细代码已上传到github: click me Abstract:    Sentiment classification is the process of analyzing and reasoning the sentimental subjective text, that is, analyzing the attitude of the speaker and inferring the sentiment category it contains. Traditional mac…
之前在BERT实战——基于Keras一文中介绍了两个库 keras_bert 和 bert4keras 但是由于 bert4keras 处于开发阶段,有些函数名称和位置等等发生了变化,那篇文章只用了 bert4keras 进行情感分析 于是这里新开了一篇文章将 2 个库都用一遍, bert4keras 也使用最新版本 本文所用bert4keras时间:2019-11-09 害怕 bert4keras 后续继续变化,需要稳定的可以先采用 keras_bert 数据集:https://github.…
最近对NLP中情感分类子方向的研究有些兴趣,在此整理下个人阅读的笔记(持续更新中): 1. Thumbs up? Sentiment classification using machine learning techniques 年份:2002:关键词:ML:引用量:9674:推荐指数(1-5):2 描述:基于电影评价,使用传统ML模型(Navie Bayes, maximum entropy classification和SVM)做情感分析. 心得: (1)主题分类(Topic Classi…
kaggle链接:https://www.kaggle.com/c/word2vec-nlp-tutorial/overview 简介:给出 50,000 IMDB movie reviews,进行0和1情感二分类 我的github代码仓库:https://github.com/beathahahaha/kaggle_IMDB_sentiment_classification 给出两段代码,都值得借鉴: 第一个是,lstm实现的pytorch版本,调参以后从0.90569提升到了0.95718(…
文本情感分类: 文本情感分类(一):传统模型 摘自:http://spaces.ac.cn/index.php/archives/3360/ 测试句子:工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作 分词工具 测试结果 结巴中文分词 工信处/ 女干事/ 每月/ 经过/ 下属/ 科室/ 都/ 要/ 亲口/ 交代/ 24/ 口/ 交换机/ 等/ 技术性/ 器件/ 的/ 安装/ 工作 中科院分词 工/n 信/n 处女/n 干事/n 每月/r 经过/p 下属/v 科室/n 都…
电影文本情感分类 Github地址 Kaggle地址 这个任务主要是对电影评论文本进行情感分类,主要分为正面评论和负面评论,所以是一个二分类问题,二分类模型我们可以选取一些常见的模型比如贝叶斯.逻辑回归等,这里挑战之一是文本内容的向量化,因此,我们首先尝试基于TF-IDF的向量化方法,然后尝试word2vec. # -*- coding: UTF-8 -*- import pandas as pd import numpy as np import re from bs4 import Beau…
PaddlePaddle出教程啦,教程一部分写的很详细,值得学习. 一期涉及新手入门.识别数字.图像分类.词向量.情感分析.语义角色标注.机器翻译.个性化推荐. 二期会有更多的图像内容. 随便,帮国产框架打广告:加入TechWriter队伍,强大国产深度学习利器.https://github.com/PaddlePaddle/Paddle/issues/787 . . 一.情感分类模型介绍CNN.RNN.LSTM.栈式双向LSTM 教程链接:http://book.paddlepaddle.or…
5.2自然语言处理 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.9 Sentiment classification 情感分类 情感分类任务简单来说是看一段文本,然后分辨这个人是否喜欢或不喜欢他们正在谈论的这段文本. 情感分类 一个最大的挑战是可能标记的训练集没有那么多,但是有了词嵌入,即使只有中等大小标记的训练集也能构建一个不错的情感分类器. 问题引入 通过训练一个从x到y的映射得到一个情感分类器,只需要收集在社交媒体上顾客对你的评价,你就可以判断其对餐厅的情感是正面的还是负面…
为什么要用深度学习模型?除了它更高精度等原因之外,还有一个重要原因,那就是它是目前唯一的能够实现“端到端”的模型.所谓“端到端”,就是能够直接将原始数据和标签输入,然后让模型自己完成一切过程——包括特征的提取.模型的学习.而回顾我们做中文情感分类的过程,一般都是“分词——词向量——句向量(LSTM)——分类”这么几个步骤.虽然很多时候这种模型已经达到了state of art的效果,但是有些疑问还是需要进一步测试解决的.对于中文来说,字才是最低粒度的文字单位,因此从“端到端”的角度来看,应该将直…
使用IMDB情绪数据来比较CNN和RNN两种方法,预处理与上节相同 from __future__ import print_function import numpy as np import pandas as pd from keras.preprocessing import sequence from keras.models import Sequential from keras.layers import Dense,Dropout,Embedding,LSTM,Bidirect…
文本情感分类: 文本情感分类采用LSTM的最后一层输出 比如双层的LSTM,使用正向的最后一层和反向的最后一层进行拼接 def forward(self,input): ''' :param input: :return: ''' input_embeded = self.embedding(input) #[batch_size,seq_len,200] output,(h_n,c_n) = self.lstm(input_embeded) out = torch.cat(h_n[-1,:,:…
摘要:这篇文章将详细讲解自然语言处理过程,基于机器学习和TFIDF的情感分类算法,并进行了各种分类算法(SVM.RF.LR.Boosting)对比 本文分享自华为云社区<[Python人工智能] 二十三.基于机器学习和TFIDF的情感分类(含详细的NLP数据清洗)>,作者: eastmount. 在数据分析和数据挖掘中,通常需要经历前期准备.数据爬取.数据预处理.数据分析.数据可视化.评估分析等步骤,而数据分析之前的工作几乎要花费数据工程师近一半的工作时间,其中的数据预处理也将直接影响后续模型…
Bi-LSTM(Attention) @ 目录 Bi-LSTM(Attention) 1.理论 1.1 文本分类和预测(翻译) 1.2 注意力模型 1.2.1 Attention模型 1.2.2 Bi-LSTM(Attention)模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 文本分类和预测(翻译) 文本分类的输入处理和预测(翻译)不同: 预测(翻译)通常用eye()把每个输入向量转换为one-hot向量, 但文本分类模型通常用Embedding初始化一个嵌入矩阵用来…
TextCNN @ 目录 TextCNN 1.理论 1.1 基础概念 最大汇聚(池化)层: 1.2 textCNN模型结构 2.实验 2.1 实验步骤 2.2 算法模型 1.理论 1.1 基础概念 在文本处理中使用卷积神经网络:将文本序列当作一维图像 一维卷积 -> 基于互相关运算的二维卷积的特例: 多通道的一维卷积: 最大汇聚(池化)层: 1.2 textCNN模型结构 textCNN模型设计如下所示: 定义多个一维卷积核,并分别对输入执行卷积运算.具有不同宽度的卷积核可以捕获不同数目的相邻词…
参照当Bert遇上Kerashttps://spaces.ac.cn/archives/6736此示例准确率达到95.5%+ https://github.com/CyberZHG/keras-bert/blob/master/README.zh-CN.md 示例实现 # ! -*- coding:utf-8 -*- import json import numpy as np import pandas as pd from random import choice from keras_be…
目录 Sentiment Analysis Two approaches Single layer Multi-layers Sentiment Analysis Two approaches SimpleRNNCell single layer multi-layers RNNCell Single layer import os import tensorflow as tf import numpy as np from tensorflow import keras from tenso…
特征选择 RFormula RFormula是一个很方便,也很强大的Feature选择(自由组合的)工具. 输入string 进行独热编码(见下面例子country) 输入数值型转换为double(见下面例子hour) label为string,也用StringIndexer进行编号 RFormula produces a vector column of features and a double or string column of label. Like when formulas ar…
项目要求: 爬取新浪网导航页所有下所有大类.小类.小类里的子链接,以及子链接页面的新闻内容. 什么是Scrapy框架: Scrapy是用纯Python实现一个为了爬取网站数据.提取结构性数据而编写的应用框架,用途非常广泛. 框架的力量,用户只需要定制开发几个模块就可以轻松的实现一个爬虫,用来抓取网页内容以及各种图片,非常之方便. Scrapy 使用了 Twisted['twɪstɪd](其主要对手是Tornado)异步网络框架来处理网络通讯,可以加快我们的下载速度,不用自己去实现异步框架,并且包…
1.keras_bert 和 kert4keras keras_bert 是 CyberZHG 大佬封装好了Keras版的Bert,可以直接调用官方发布的预训练权重. github:https://github.com/CyberZHG/keras-bert 快速安装:pip install keras-bert kert4keras 是 苏剑林 大佬参考 keras-bert 重新编写的一个 keras 版的 bert,所以使用体验差不多,但 kert4keras 可以适配 albert gi…
bert模型在tensorflow1.x版本时,也是先发布的命令行版本,随后又发布了bert-tensorflow包,本质上就是把相关bert实现封装起来了. tensorflow2.0刚刚在2019年10月左右发布,谷歌也在积极地将之前基于tf1.0的bert实现迁移到2.0上,但近期看还没有完全迁移完成,所以目前还没有基于tf2.0的bert安装包面世,因为近期想基于现有发布的模型做一个中文多分类的事情,所以干脆就弄了个基于命令行版本的.过程中有一些坑,随之记录下来. 1. colab:因为…
随着BERT大火之后,很多BERT的变种,这里借用Huggingface工具来简单实现一个文本分类,从而进一步通过Huggingface来认识BERT的工程上的实现方法. 1.load data train_df = pd.read_csv('../data/train.tsv',delimiter='\t',names=['text','label']) print(train_df.shape) train_df.head()sentences = list(train_df['text']…
源码:https://github.com/keras-team/keras/blob/master/examples/imdb_bidirectional_lstm.py 及keras中文文档 1.imdb数据集 数据集来自 IMDB 的 25,000 条电影评论,以情绪(正面/负面)标记.评论已经过预处理,并编码为词索引(整数)的序列表示.为了方便起见,将词按数据集中出现的频率进行索引,例如整数 3 编码数据中第三个最频繁的词. 这允许快速筛选操作,例如:「只考虑前 10,000 个最常用的…
https://blog.csdn.net/u012927188/article/details/73650264…
先运行main.py进行文本序列化,再train.py模型训练 dataset.py from torch.utils.data import DataLoader,Dataset import torch import os from utils import tokenlize import config class ImdbDataset(Dataset): def __init__(self,train=True): super(ImdbDataset,self).__init__()…
BERT 预训练模型及文本分类 介绍 如果你关注自然语言处理技术的发展,那你一定听说过 BERT,它的诞生对自然语言处理领域具有着里程碑式的意义.本次试验将介绍 BERT 的模型结构,以及将其应用于文本分类实践. 知识点 语言模型和词向量 BERT 结构详解 BERT 文本分类 BERT 全称为 Bidirectional Encoder Representations from Transformer,是谷歌在 2018 年 10 月发布的语言表示模型.BERT 通过维基百科和书籍语料组成的庞…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…
Text-CNN 1.文本分类 转眼学生生涯就结束了,在家待就业期间正好有一段空闲期,可以对曾经感兴趣的一些知识点进行总结. 本文介绍NLP中文本分类任务中核心流程进行了系统的介绍,文末给出一个基于Text-CNN模型在搜狗新闻数据集上二分类的Demo. 文本分类是自然语言处理领域最活跃的研究方向之一,从样本数据的分类标签是否互斥上来说,可以分为文本多分类与文本多标签分类. 文本分类 目前文本分类在工业界的应用场景非常普遍,从新闻的分类.商品评论信息的情感分类到微博信息打标签辅助推荐系统,了解文…