Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d  8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1…
Consider the fraction, n/d, where n and d are positive integers. If nd and HCF(n,d)=1, it is called a reduced proper fraction. If we list the set of reduced proper fractions for d  8 in ascending order of size, we get: 1/8, 1/7, 1/6, 1/5, 1/4, 2/7, 1…
The fraction 49/98 is a curious fraction, as an inexperienced mathematician in attempting to simplify it may incorrectly believe that49/98 = 4/8, which is correct, is obtained by cancelling the 9s. We shall consider fractions like, 30/50 = 3/5, to be…
The number, 197, is called a circular prime because all rotations of the digits: 197, 971, and 719, are themselves prime. There are thirteen such primes below 100: 2, 3, 5, 7, 11, 13, 17, 31, 37, 71, 73, 79, and 97. How many circular primes are there…
It is possible to show that the square root of two can be expressed as an infinite continued fraction.  2 = 1 + 1/(2 + 1/(2 + 1/(2 + ... ))) = 1.414213... By expanding this for the first four iterations, we get: 1 + 1/2 = 3/2 = 1.51 + 1/(2 + 1/2) = 7…
The nth term of the sequence of triangle numbers is given by, tn = ½n(n+1); so the first ten triangle numbers are: 1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ... By converting each letter in a word to a number corresponding to its alphabetical position and…
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly once. For example, 2143 is a 4-digit pandigital and is also prime. What is the largest n-digit pandigital prime that exists? 题目大意: 如果一个数字将1到n的每个数字都使用且只…
Euler's Totient function, φ(n) [sometimes called the phi function], is used to determine the number of positive numbers less than or equal to n which are relatively prime to n. For example, as 1, 2, 4, 5, 7, and 8, are all less than nine and relative…
The number 145 is well known for the property that the sum of the factorial of its digits is equal to 145: 1! + 4! + 5! = 1 + 24 + 120 = 145 Perhaps less well known is 169, in that it produces the longest chain of numbers that link back to 169; it tu…
It was proposed by Christian Goldbach that every odd composite number can be written as the sum of a prime and twice a square. 9 = 7 + 21215 = 7 + 22221 = 3 + 23225 = 7 + 23227 = 19 + 22233 = 31 + 212 It turns out that the conjecture was false. What…
There are exactly ten ways of selecting three from five, 12345: 123, 124, 125, 134, 135, 145, 234, 235, 245, and 345 In combinatorics, we use the notation, 5C3 = 10. In general, It is not until n = 23, that a value exceeds one-million: 23C10 = 114406…
The arithmetic sequence, 1487, 4817, 8147, in which each of the terms increases by 3330, is unusual in two ways: (i) each of the three terms are prime, and, (ii) each of the 4-digit numbers are permutations of one another. There are no arithmetic seq…
The first two consecutive numbers to have two distinct prime factors are: 14 = 2  7 15 = 3  5 The first three consecutive numbers to have three distinct prime factors are: 644 = 2²  7  23 645 = 3  5  43 646 = 2  17  19. Find the first four consecutiv…
The number 3797 has an interesting property. Being prime itself, it is possible to continuously remove digits from left to right, and remain prime at each stage: 3797, 797, 97, and 7. Similarly we can work from right to left: 3797, 379, 37, and 3. Fi…
The decimal number, 585 = 10010010012(binary), is palindromic in both bases. Find the sum of all numbers, less than one million, which are palindromic in base 10 and base 2. (Please note that the palindromic number, in either base, may not include le…
145 is a curious number, as 1! + 4! + 5! = 1 + 24 + 120 = 145. Find the sum of all numbers which are equal to the sum of the factorial of their digits. Note: as 1! = 1 and 2! = 2 are not sums they are not included. 题目大意: 145 是一个奇怪的数字, 因为 1! + 4! + 5!…
Consider all integer combinations ofabfor 2a5 and 2b5: 22=4, 23=8, 24=16, 25=32 32=9, 33=27, 34=81, 35=243 42=16, 43=64, 44=256, 45=1024 52=25, 53=125, 54=625, 55=3125 If they are then placed in numerical order, with any repeats removed, we get the f…
Starting with the number 1 and moving to the right in a clockwise direction a 5 by 5 spiral is formed as follows: 21 22 23 24 2520  7   8   9  1019  6   1   2  1118  5   4   3  1217 16 15 14 13 It can be verified that the sum of the numbers on the di…
Using names.txt (right click and 'Save Link/Target As...'), a 46K text file containing over five-thousand first names, begin by sorting it into alphabetical order. Then working out the alphabetical value for each name, multiply this value by its alph…
Let d(n) be defined as the sum of proper divisors of n (numbers less than n which divide evenly into n). If d(a) = b and d(b) = a, where a b, then a and b are an amicable pair and each of a and b are called amicable numbers. For example, the proper d…
If the numbers 1 to 5 are written out in words: one, two, three, four, five, then there are 3 + 3 + 5 + 4 + 4 = 19 letters used in total. If all the numbers from 1 to 1000 (one thousand) inclusive were written out in words, how many letters would be…
215 = 32768 and the sum of its digits is 3 + 2 + 7 + 6 + 8 = 26. What is the sum of the digits of the number 21000? 题目大意: 题目大意: 215 = 32768 并且其各位之和为 is 3 + 2 + 7 + 6 + 8 = 26. 21000 的各位数之和是多少? // (Problem 16)Power digit sum // Completed on Sun, 17 No…
Starting in the top left corner of a 22 grid, and only being able to move to the right and down, there are exactly 6 routes to the bottom right corner. How many such routes are there through a 2020 grid? 题目大意: 从一个22网格的左上角开始,有6条(不允许往回走)通往右下角的路. 对于2020…
Work out the first ten digits of the sum of the following one-hundred 50-digit numbers. 371072875339021027987979982208375902465101357402504637693767749000971264812489697007805041701826053874324986199524741059474233309513058123726617309629919422133635…
The following iterative sequence is defined for the set of positive integers: n n/2 (n is even) n 3n + 1 (n is odd) Using the rule above and starting with 13, we generate the following sequence: 13 40 20 10 5 16 8 4 2 1 It can be seen that this seque…
题目链接:https://projecteuler.net/problem=73 n/d的真分数 ,当d<=12000时 在 1/3 and 1/2 之间的有多少个 public class P73{ void run(){ FareySequences(); } void FareySequences(){ int limit = 12000; int a = 1; int b = 3; int c = 4000; int d = 11999; int count=0; while(!(c==…
Problem E Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total Submission(s): 635    Accepted Submission(s): 111 Problem Description 在数据维护的过程中,保持高效的数据访问和修改是非常重要的工作,这个题目就需要你用高效的手段来维护一段数据并执行不同的操作. 我们首先用如下公式生成一个矩阵A:…
The cube, 41063625 (3453), can be permuted to produce two other cubes: 56623104 (3843) and 66430125 (4053). In fact, 41063625 is the smallest cube which has exactly three permutations of its digits which are also cube. Find the smallest cube for whic…
The sum of the primes below 10 is 2 + 3 + 5 + 7 = 17. Find the sum of all the primes below two million. #include<stdio.h> #include<math.h> #include<stdbool.h> #define N 2000000 bool prim(int n) { int i; ; i*i<=n; i++) { ) return false…
A Pythagorean triplet is a set of three natural numbers, a  b  c, for which, a2 + b2 = c2 For example, 32 + 42 = 9 + 16 = 25 = 52. There exists exactly one Pythagorean triplet for which a + b + c = 1000.Find the product abc. #include<stdio.h> #inclu…