PLA能收敛的证明】的更多相关文章

题:如果资料D线性可分,PLA如何保证最后能得到最优解. 思路:假设$w_f$能够分割资料D,$w_{t+1}$经过更新$w_{t+1}=w_t + y_{n(t)}x_{n(t)}$后,与$w_f$更接近 两个向量更接近,则有$Z=\frac{w_f^Tw_t}{||w_f||||w_t||}$越大 其中$w_f^tw_t=w_f^tw_{t-1}+w_f^ty_{n(i)}x_{n(i)}=w_f^tw_0+w_f^t\sum_i^t y_{n(i)}x_{n(i)}$令$w_0=0$,则$…
PLA算法总结及其证明 http://m.blog.csdn.net/article/details?id=45232891 分类: 机器学习 PLA(Perception Learning Algorithm)适用于二维及高维的线性可划分问题.问题的答案只有同意或者不同意.例如银行可以根据顾客的个人信息来判断是否给顾客发放信用卡.将顾客抽象为一个向量X,包括姓名.年龄.年收入.负债数等.同时设定各个属性所占的比例向量w,对于正相关的属性设置相对较高的比例如年收入,对于负相关的属性设置较低的比例…
上一篇开头说过1983年,美国数学家吴建福(C.F. Jeff Wu)给出了EM算法在指数族分布以外的收敛性证明. EM算法的收敛性只要我们能够证明对数似然函数的值在迭代的过程中是增加的 即可: 证明: 一直我们的EM算法会极大化这个似然函数L, 问题得证.…
标签(空格分隔): 机器学习 (最近被一波波的笔试+面试淹没了,但是在有两次面试时被问到了同一个问题:K-Means算法的收敛性.在网上查阅了很多资料,并没有看到很清晰的解释,所以希望可以从K-Means与EM算法的关系,以及EM算法本身的收敛性证明中找到蛛丝马迹,下次不要再掉坑啊..) EM算法的收敛性 1.通过极大似然估计建立目标函数: \(l(\theta) = \sum_{i=1}^{m}log\ p(x;\theta) = \sum_{i=1}^{m}log\sum_{z}p(x,z;…
不多说,直接上干货! 面试很容易被问的:K-Means算法的收敛性. 在网上查阅了很多资料,并没有看到很清晰的解释,所以希望可以从K-Means与EM算法的关系,以及EM算法本身的收敛性证明中找到蛛丝马迹,下次不要再掉坑啊. EM算法的收敛性 1.通过极大似然估计建立目标函数: 通过EM算法来找到似然函数的极大值,思路如下:希望找到最好的参数θ,能够使最大似然目标函数取最大值.但是直接计算 比较困难,所以我们希望能够找到一个不带隐变量z的函数恒成立,并用 逼近目标函数. 如下图所示: 在绿色线位…
前言 支持向量机(Support Vector Machine,SVM)在70年代由苏联人 Vladimir Vapnik 提出,主要用于处理二分类问题,也就是研究如何区分两类事物. 本文主要介绍支持向量机如何解决线性可分和非线性可分问题,最后还会对 SMO 算法进行推导以及对 SMO 算法的收敛性进行简要分析,但受限于篇幅,本文不会对最优化问题.核函数.原问题和对偶问题等前置知识做过于深入的介绍,需要了解相关知识的读者朋友请移步其它文章.资料. SVM 推导过程主要参考自胡浩基教授的机器学习公…
之前上了台大的机器学习基石课程,里面用的教材是<Learning from data>,最近看了看觉得不错,打算深入看下去,内容上和台大的课程差不太多,但是有些点讲的更深入,想了解课程里面讲什么的童鞋可以看我之前关于课程的第一章总结列表: 机器学习定义及PLA算法 机器学习的分类 机器学习的可能性   我打算边看书边复习讲义,然后用自己的话把每章能看懂的点总结下,欢迎大家指正.由于用语会尽量口语保证易懂,所以会有失严谨性,具体的细节可以看本书.<Learning from data>…
第一讲中我们学习了一个机器学习系统的完整框架,包含以下3部分:训练集.假设集.学习算法 一个机器学习系统的工作原理是:学习算法根据训练集,从假设集合H中选择一个最好的假设g,使得g与目标函数f尽可能低接近.H称为假设空间,是由一个学习模型的参数决定的假设构成的一个空间.而我们这周就要学习一个特定的H——感知器模型. 感知器模型在神经网络发展历史中占有特殊地位,并且是第一个具有完整算法描述的神经网络学习算法(称为感知器学习算法:PLA).这个算法是由一位心理学家Rosenblatt在1958年提出…
直接跳过第一讲.从第二讲Perceptron开始,记录这一讲中几个印象深的点: 1. 之前自己的直觉一直对这种图理解的不好,老按照x.y去理解. a) 这种图的每个坐标代表的是features:features的值是有物理意义的. b) 而圈圈和叉叉是为了标注不同的样本(正样本 负样本),即label:为了后续的很多简便表示,这里正样本取+1,负样本取-1 2. Perceptron Learning策略的几何意义:表示临界线(面)的法向量旋转方向 由于label设为了+1和-1,可以直接用w+…
目录 1. 感知机原理 2. 损失函数 3. 优化方法 4. 感知机的原始算法 5. 感知机的对偶算法 6. 从图形中理解感知机的原始算法 7. 感知机算法(PLA)的收敛性 8. 应用场景与缺陷 9. 其他 10. 参考资料 1. 感知机原理 感知机是二分类的线性分类模型,本质上想找到一条直线或者分离超平面对数据进行线性划分 适用于线性可分的数据集,否则感知机不会收敛 假设有一个数据集\(D = {(x_1, y_1), (x_2, y_2), ..., (x_N, y_N)}\),其中\(x…