Deep Auto-encoder】的更多相关文章

对基于深度神经网络的Auto Encoder用于异常检测的一些思考 from:https://my.oschina.net/u/1778239/blog/1861724 一.前言 现实中,大部分数据都是无标签的,人和动物多数情况下都是通过无监督学习获取概念,故而无监督学习拥有广阔的业务场景.举几个场景:网络流量是正常流量还是攻击流量.视频中的人的行为是否正常.运维中服务器状态是否异常等等.有监督学习的做法是给样本标出label,那么标label的过程肯定是基于某一些规则(图片除外),既然有了规则…
对自编码器的理解: 对于给定的原始输入x,让网络自动找到一种编码方式(特征提取,原始数据的另一种表达),使其解码后的输出x'尽可能复现原始输入x. 知乎参考:https://www.zhihu.com/question/41490383  UFLDL : http://deeplearning.stanford.edu/wiki/index.php/%E8%87%AA%E7%BC%96%E7%A0%81%E7%AE%97%E6%B3%95%E4%B8%8E%E7%A8%80%E7%96%8F%E…
Deep Learning and Shallow Learning 由于 Deep Learning 现在如火如荼的势头,在各种领域逐渐占据 state-of-the-art 的地位,上个学期在一门课的 project 中见识过了 deep learning 的效果,最近在做一个东西的时候模型上遇到一点瓶颈于是终于决定也来了解一下这个魔幻的领域. 据说 Deep Learning 的 break through 大概可以从 Hinton 在 2006 年提出的用于训练 Deep Belief…
论文地址:DeepFilterNet:基于深度滤波的全频带音频低复杂度语音增强框架 论文代码:https://github.com/ Rikorose/DeepFilterNet 引用:Schröter H, Rosenkranz T, Maier A. DeepFilterNet: A Low Complexity Speech Enhancement Framework for Full-Band Audio based on Deep Filtering[J]. arXiv preprin…
Paper information Titile:Deep Fusion Clustering Network Authors:Wenxuan Tu, Sihang Zhou, Xinwang Liu, Xifeng Guo, Zhiping Cai, En Zhu, Jieren Cheng Sources:2020, AAAI Code:Download Paper:Download Others:4 Citations, 41 References Abstract The disadva…
ssl payload取1024字节,然后使用VAE检测异常的ssl流. 代码如下: from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler import numpy as np import tensorflow as tf import tflearn from matplotlib import pyplot as plt import sea…
一 前言 1.1 Creation 据说在费曼死后,人们在他生前的黑板上拍到如图画片,在左上角有道:What i cannot create ,I do not understand. Generative models,就是在做创造的事情. 1.2 Image Processing 二 Generative Models 这是目前的主要方法. 2.1 PixelRNN 每次生成一个像素,用这样的方法,没有任何注释可以训练就有一大堆图像,效果还不错.下边是某一个实例: 2.2 Variation…
前言: 本篇文章主要讲解的是在学习人工智能之深度学习时所学到的知识和需要的环境配置(安装Anaconda3和TensorFlow2步骤详解),以及个人的心得体会,汇集成本篇文章,作为自己深度学习的总结与笔记. 内容主要是人工智能和深度学习的简介.环境配置和简单的python实例演示. 对于刚了解人工智能基本常识和具有Python基础的人,再来看本篇文章,就会对人工智能之深度学习有种豁然开朗的感觉,也是对人工智能学习的一种进阶. PS:开发工具包在文章末尾,有需要或者有问题可以评论区留言讨论 一.…
论文地址:基于分层递归神经网络的嵌入式设备轻量化在线降噪 引用格式:Schröter H, Rosenkranz T, Zobel P, et al. Lightweight Online Noise Reduction on Embedded Devices using Hierarchical Recurrent Neural Networks[J]. arXiv preprint arXiv:2006.13067, 2020. 摘要 基于深度学习的降噪算法已经证明了它们的成功,尤其是对非平…
这几天在做用户画像,特征是用户的消费商品的消费金额,原始数据(部分)是这样的: id goods_name goods_amount 男士手袋 1882.0 淑女装 2491.0 女士手袋 345.0 基础内衣 328.0 商务正装 4985.0 时尚 969.0 女饰品 86.0 专业运动 399.0 童装(中大童) 2033.0 男士配件 38.0 我们看到同一个id下面有不同的消费记录,这个数据不能直接拿来用,写了python程序来进行处理:test.py #!/usr/bin/pytho…