【Spark篇】---Spark中控制算子】的更多相关文章

一.前述 Spark中控制算子也是懒执行的,需要Action算子触发才能执行,主要是为了对数据进行缓存. 控制算子有三种,cache,persist,checkpoint,以上算子都可以将RDD持久化,持久化的单位是partition.cache和persist都是懒执行的.必须有一个action类算子触发执行.checkpoint算子不仅能将RDD持久化到磁盘,还能切断RDD之间的依赖关系. 二.具体算子 1. cache 默认将RDD的数据持久化到内存中.cache是懒执行. chche (…
一.前述 SparkStreaming中的算子分为两类,一类是Transformation类算子,一类是OutPutOperator类算子. Transformation类算子updateStateByKey,reduceByKeyAndWindow,transform OutPutOperator类算子print,foreachRDD,saveAsTextFile 本文讲解OutPutOperator类算子. 二.具体 1.foreachRDD 可以拿到DStream中的一个个的RDD,对拿到…
一.前述 今天分享一篇SparkStreaming常用的算子transform和updateStateByKey. 可以通过transform算子,对Dstream做RDD到RDD的任意操作.其实就是DStream的类型转换. 算子内,拿到的RDD算子外,代码是在Driver端执行的,每个batchInterval执行一次,可以做到动态改变广播变量. 为SparkStreaming中每一个Key维护一份state状态,通过更新函数对该key的状态不断更新. 二.具体细节         1.tr…
一.前述 Spark中因为算子中的真正逻辑是发送到Executor中去运行的,所以当Executor中需要引用外部变量时,需要使用广播变量. 累机器相当于统筹大变量,常用于计数,统计. 二.具体原理 1.广播变量 广播变量理解图 注意事项 1.能不能将一个RDD使用广播变量广播出去? 不能,因为RDD是不存储数据的.可以将RDD的结果广播出去. 2. 广播变量只能在Driver端定义,不能在Executor端定义. 3. 在Driver端可以修改广播变量的值,在Executor端无法修改广播变量…
RDD算子调优 不废话,直接进入正题! 1. RDD复用 在对RDD进行算子时,要避免相同的算子和计算逻辑之下对RDD进行重复的计算,如下图所示: 对上图中的RDD计算架构进行修改,得到如下图所示的优化结果: 2. 尽早filter 获取到初始RDD后,应该考虑尽早地过滤掉不需要的数据,进而减少对内存的占用,从而提升Spark作业的运行效率. 本文首发于公众号:五分钟学大数据,欢迎围观 3. 读取大量小文件-用wholeTextFiles 当我们将一个文本文件读取为 RDD 时,输入的每一行都会…
前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apache Spark简介 Spark的四种运行模式 Spark基于Standlone的运行流程 Spark基于YARN的运行流程 Apache Spark是什么? Spark是一个用来实现快速而通用的集群计算的平台.扩展了广泛使用的MapReduce计算模型,而且高效地支持更多的计算模式,包括交互式查询和流处理.在处理大规模数据集的时候,速度是非常重要的.Spark的一个重要特点就是能够在内存中计算,因…
本文主要记录我使用Spark以来遇到的一些典型问题及其解决的方法,希望对遇到相同问题的同学们有所帮助. 1. Spark环境或配置相关 Q: Sparkclient配置文件spark-defaults.conf中,spark.executor.memory和spark.cores.max应该怎样合理配置? A: 配置前,须要对spark集群中每一个节点机器的core和memory的配置有基本了解.比方由100台机器搭建的spark集群中.每一个节点的配置是core=32且memory=128GB…
原文:https://www.cnblogs.com/miqi1992/p/5621268.html 前言 本章将对Spark做一个简单的介绍,更多教程请参考:Spark教程 本章知识点概括 Apache Spark简介 Spark的四种运行模式 Spark基于Standlone的运行流程 Spark基于YARN的运行流程 Apache Spark是什么? Spark是一个用来实现快速而通用的集群计算的平台.扩展了广泛使用的MapReduce计算模型,而且高效地支持更多的计算模式,包括交互式查询…
Spark是现在应用最广泛的分布式计算框架,oozie支持在它的调度中执行spark.在我的日常工作中,一部分工作就是基于oozie维护好每天的spark离线任务,合理的设计工作流并分配适合的参数对于spark的稳定运行十分重要. Spark Action 这个Action允许执行spark任务,需要用户指定job-tracker以及name-node.先看看语法规则: 语法规则 <workflow-app name="[WF-DEF-NAME]" xmlns="uri…
首先是一张Spark的部署图: 节点类型有: 1. master 节点: 常驻master进程,负责管理全部worker节点.2. worker 节点: 常驻worker进程,负责管理executor 并与master节点通信.dirvier:官方解释为: The process running the main() function of the application and creating the SparkContext.即理解为用户自己编写的应用程序 一.Application ap…
1. HBase读写的方式概况 主要分为: 纯Java API读写HBase的方式: Spark读写HBase的方式: Flink读写HBase的方式: HBase通过Phoenix读写的方式: 第一种方式是HBase自身提供的比较原始的高效操作方式,而第二.第三则分别是Spark.Flink集成HBase的方式,最后一种是第三方插件Phoenix集成的JDBC方式,Phoenix集成的JDBC操作方式也能在Spark.Flink中调用. 注意: 这里我们使用HBase2.1.2版本,spark…
一.前述 Spark中调优大致分为以下几种 ,代码调优,数据本地化,内存调优,SparkShuffle调优,调节Executor的堆外内存. 二.具体    1.代码调优 1.避免创建重复的RDD,尽量使用同一个RDD 2.对多次使用的RDD进行持久化 如何选择一种最合适的持久化策略? 默认情况下,性能最高的当然是MEMORY_ONLY,但前提是你的内存必须足够足够大,可以绰绰有余地存放下整个RDD的所有数据.因为不进行序列化与反序列化操作,就避免了这部分的性能开销:对这个RDD的后续算子操作,…
一.前述 Spark中资源调度是一个非常核心的模块,尤其对于我们提交参数来说,需要具体到某些配置,所以提交配置的参数于源码一一对应,掌握此节对于Spark在任务执行过程中的资源分配会更上一层楼.由于源码部分太多本节只抽取关键部分和结论阐述,更多的偏于应用. 二.具体细节 1.Spark-Submit提交参数 Options: --master MASTER_URL, 可以是spark://host:port, mesos://host:port, yarn,  yarn-cluster,yarn…
spark在idea中本地如何运行? 前几天尝试使用idea在本地运行spark+scala的程序,出现了问题,http://www.cnblogs.com/yjf512/p/7662105.html 当时还以为是本地spark安装问题,今天发现原来不是.记录如下: 现象 使用pom写了一个程序,发现出现下面的错误 17/10/12 17:09:43 INFO storage.DiskBlockManager: Created local directory at /private/var/fo…
Apache Spark 2.2最近引入了高级的基于成本的优化器框架用于收集并均衡不同的列数据的统计工作 (例如., 基(cardinality).唯一值的数量.空值.最大最小值.平均/最大长度,等等)来改进查询类作业的执行计划.均衡这些作业帮助Spark在选取最优查询计划时做出更好决定.这些优化的例子包括在做hash-join时选择正确的一方建hash,选择正确的join类型(广播hash join和全洗牌hash-join)或调整多路join的顺序,等等) 在该博客中,我们将深入讲解Spar…
HBase读写的几种方式(二)spark篇 https://www.cnblogs.com/swordfall/p/10517177.html 分类: HBase undefined 1. HBase读写的方式概况 主要分为: 纯Java API读写HBase的方式: Spark读写HBase的方式: Flink读写HBase的方式: HBase通过Phoenix读写的方式: 第一种方式是HBase自身提供的比较原始的高效操作方式,而第二.第三则分别是Spark.Flink集成HBase的方式,…
Spark-RDD编程常用转换算子代码实例 Spark rdd 常用 Transformation 实例: 1.def map[U: ClassTag](f: T => U): RDD[U]   将函数应用于RDD的每一元素,并返回一个新的RDD package top.ruandb import org.apache.spark.{SparkConf, SparkContext} object RddTest extends App{ val sparkConf = new SparkConf…
若当连接到Spark的master之后,若集群中没有分布式文件系统,Spark会在集群中每一台机器上加载数据,所以要确保Spark集群中每个节点上都有完整数据. 通常可以选择把数据放到HDFS.S3或者类似的分布式文件系统去避免这个问题.…
相对于使用MapReduce或者Spark Application的方式进行数据分析,使用Hive SQL或Spark SQL能为我们省去不少的代码工作量,而Hive SQL或Spark SQL本身内置的各类UDF也为我们的数据处理提供了不少便利的工具,当这些内置的UDF不能满足于我们的需要时,Hive SQL或Spark SQL还为我们提供了自定义UDF的相关接口,方便我们根据自己的需求进行扩展.   在Hive的世界里使用自定义UDF的过程是比较复杂的.我们需要根据需求使用Java语言开发相…
眼下,SPARK在大数据处理领域十分流行.尤其是对于大规模数据集上的机器学习算法.SPARK更具有优势.一下初步介绍SPARK在linux中的部署与使用,以及当中聚类算法的实现. 在官网http://spark.apache.org/上直接下载编译好的tar安装包能够加快部署速度. spark的执行依赖于scala2.10.4,注意此版本号一定要正确,否则spark不能正确执行. 1.scala的安装非常easy.在官网http://www.scala-lang.org上下载安装包,解压到随意路…
一.前述 Spark on Hive: Hive只作为储存角色,Spark负责sql解析优化,执行. 二.具体配置 1.在Spark客户端配置Hive On Spark 在Spark客户端安装包下spark-1.6.0/conf中创建文件hive-site.xml: 配置hive的metastore路径 <configuration> <property> <name>hive.metastore.uris</name> <value>thrif…
[Spark][Python]DataFrame中取出有限个记录的例子: sqlContext = HiveContext(sc) peopleDF = sqlContext.read.json("people.json") peopleDF.limit(3).show() === [training@localhost ~]$ hdfs dfs -cat people.json{"name":"Alice","pcode":…
相对于使用MapReduce或者Spark Application的方式进行数据分析,使用Hive SQL或Spark SQL能为我们省去不少的代码工作量,而Hive SQL或Spark SQL本身内置的各类UDF也为我们的数据处理提供了不少便利的工具,当这些内置的UDF不能满足于我们的需要时,Hive SQL或Spark SQL还为我们提供了自定义UDF的相关接口,方便我们根据自己的需求进行扩展.   在Hive的世界里使用自定义UDF的过程是比较复杂的.我们需要根据需求使用Java语言开发相…
  Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制parallelism,所有的数据和操作自动并行分布在各个集群结点上.以处理in-memory数据的方式处理distributed数据.支持Hadoop,能处理大量数据 延迟机制 not lazy-evaluated lazy-evaluated 内存缓存 单机缓存 persist() or cache()将…
  Pandas Spark 工作方式 单机single machine tool,没有并行机制parallelism不支持Hadoop,处理大量数据有瓶颈 分布式并行计算框架,内建并行机制parallelism,所有的数据和操作自动并行分布在各个集群结点上.以处理in-memory数据的方式处理distributed数据.支持Hadoop,能处理大量数据 延迟机制 not lazy-evaluated lazy-evaluated 内存缓存 单机缓存 persist() or cache()将…
Spark集群的调度分应用间调度和应用内调度两种情况,下文分别进行说明. 1. 应用间调度 1) 调度策略1: 资源静态分区 资源静态分区是指整个集群的资源被预先划分为多个partitions,资源分配时的最小粒度是一个静态的partition. 依据应用对资源的申请需求为其分配静态的partition(s)是Spark支持的最简单的调度策略. 我们已经知道,不同的应用有各自的Spark Context且占用各自的JVM和executor(s).依据Spark Job Scheduling文档的…
Spark性能优化指南-高级篇(spark shuffle) 非常好的讲解…
1. 任务背景 近日有个项目任务,要求读取压缩在Zip中的百科HTML文件,经分析发现,提供的Zip文件有如下特点(=>指代对应解决方案): (1) 压缩为分卷文件 => 只需将解压缩在同一目录中的一个分卷zip即可解压缩出整个文件 (2) 压缩文件中又包含不同的两个文件夹,且各包含n个小zip文件,小zip文件中包含目录及对应的HTML文本文件 采用第一方案:依次解压缩各小zip文件,存放在一个目录中,然后上传到HDFS中 存在问题:每个小zip都包含上万个小文件,按照第一方案解压缩,耗费的…
使用spark将内存中的数据写入到hive表中 hive-site.xml <?xml version="1.0" encoding="UTF-8" standalone="no"?> <?xml-stylesheet type="text/xsl" href="configuration.xsl"?> <!-- Licensed to the Apache Software…
Spark获取DataFrame中列的方式--col,$,column,apply 1.官方说明 2.使用时涉及到的的包 3.Demo 原文作者:大葱拌豆腐 原文地址:Spark获取DataFrame中列的几种姿势–col,$,column,apply 1.官方说明 df("columnName") // On a specific DataFrame. col("columnName") // A generic column no yet associated…