首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
【
[LOJ] #2360. 「NOIP2016」换教室
】的更多相关文章
[LOJ] #2360. 「NOIP2016」换教室
期望DP #include<iostream> #include<cstring> #include<cstdio> #include<cctype> using namespace std; inline int rd(){ int ret=0,f=1;char c; while(c=getchar(),!isdigit(c))f=c=='-'?-1:1; while(isdigit(c))ret=ret*10+c-'0',c=getchar(); ret…
LOJ2360. 「NOIP2016」换教室【概率DP】【Floyed】【傻逼题】
LINK 思路 先floyed出两点最短路 然后就可以直接\(dp_{i,j,0/1}\)表示前i节课选择换j节,换不换当前这一节的最小贡献 直接可以枚举上一次决策的状态计算概率进行统计就可以了 我变量名写重了僵硬了半天....被安排了 //Author: dream_maker #include<bits/stdc++.h> using namespace std; //---------------------------------------------- //typename typ…
「NOIP2016」换教室
传送门 Description 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 $ 2n $ 节课程安排在 $ n $ 个时间段上.在第 $ i $个时间段上 $ (1 \leq i \leq n) $,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 $ c_i $ 上课,而另一节课程在教室 $ d_i $ 进行. 在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的 $ n $ 节安排好的课程.如果学生想更换…
LOJ #2359. 「NOIP2016」天天爱跑步(倍增+线段树合并)
题意 LOJ #2359. 「NOIP2016」天天爱跑步 题解 考虑把一个玩家的路径 \((x, y)\) 拆成两条,一条是 \(x\) 到 \(lca\) ( \(x, y\) 最近公共祖先) 的路径,另一条是 \(lca\) 到 \(y\) 的路径.(对于 \(x, y\) 是 \(lca\) 的情况需要特殊考虑一下就行了) 这个求 \(lca\) 的过程用倍增实现就行了. 假设令到达时间为 \(at\) . 不难发现,在树上向上的路径满足 \(dep_u + at_u=d_1\) (深度…
「NOIP2016」「P1850」 换教室(期望dp
题目描述 对于刚上大学的牛牛来说,他面临的第一个问题是如何根据实际情况申请合适的课程. 在可以选择的课程中,有 2n2n 节课程安排在 nn 个时间段上.在第 ii(1 \leq i \leq n1≤i≤n)个时间段上,两节内容相同的课程同时在不同的地点进行,其中,牛牛预先被安排在教室 c_ici 上课,而另一节课程在教室 d_idi 进行. 在不提交任何申请的情况下,学生们需要按时间段的顺序依次完成所有的 nn 节安排好的课程.如果学生想更换第 ii节课程的教室,则需要提出申请.若申请通过…
[LOJ] #2363「NOIP2016」愤怒的小鸟
精度卡了一个点,别人自带大常数,我自带大浮点误差qwq. 听了好几遍,一直没动手写一写. f[S]表示S集合中的猪被打死的最少抛物线数,转移时考虑枚举两个点,最低位的0为第一个点,枚举第二个点,构造一条抛物线. 检查这条抛物线能否“顺便”打死更多的猪,然后转移即可. 注意存在一种情况,只剩下一个点,这时候要给最低位0单独开一条抛物线(体现在代码里就是f[i|(1<<(st-1))]单独转移一次) //失误 这是一个 #include<iostream> #include<cs…
Loj #3045. 「ZJOI2019」开关
Loj #3045. 「ZJOI2019」开关 题目描述 九条可怜是一个贪玩的女孩子. 这天,她和她的好朋友法海哥哥去玩密室逃脱.在他们面前的是 \(n\) 个开关,开始每个开关都是关闭的状态.要通过这关,必须要让开关达到指定的状态.目标状态由一个长度为 \(n\) 的 \(01\) 数组 \(s\) 给出,\(s_i = 0\) 表示第 \(i\) 个开关在最后需要是关着的,\(s_i = 1\) 表示第 \(i\) 个开关在最后需要被打开. 然而作为闯关者,可怜和法海并不知道 \(s\).因…
Loj #2192. 「SHOI2014」概率充电器
Loj #2192. 「SHOI2014」概率充电器 题目描述 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品--概率充电器: 「采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生 活不可或缺的必需品!能充上电吗?现在就试试看吧!」 SHOI 概率充电器由 \(n-1\) 条导线连通了 \(n\) 个充电元件.进行充电时,每条导线是否可以导电以 概率决定,每一个充电元件自身是否直接进行充电也由概率决定.随后电能可以从直接充电的元件经…
Loj #3096. 「SNOI2019」数论
Loj #3096. 「SNOI2019」数论 题目描述 给出正整数 \(P, Q, T\),大小为 \(n\) 的整数集 \(A\) 和大小为 \(m\) 的整数集 \(B\),请你求出: \[ \sum_{i=0}^{T-1} [(i\in A\pmod P)\land(i\in B\pmod Q)] \] 换言之,就是问有多少个小于 \(T\) 的非负整数 \(x\) 满足:\(x\) 除以 \(P\) 的余数属于 \(A\) 且 \(x\) 除以 \(Q\) 的余数属于 \(B\). 输…
Loj #3093. 「BJOI2019」光线
Loj #3093. 「BJOI2019」光线 题目描述 当一束光打到一层玻璃上时,有一定比例的光会穿过这层玻璃,一定比例的光会被反射回去,剩下的光被玻璃吸收. 设对于任意 \(x\),有 \(x\times a_i\%\) 单位的光会穿过它,有 \(x\times b_i\%\) 的会被反射回去. 现在 \(n\) 层玻璃叠在一起,有 \(1\) 单位的光打到第 \(1\) 层玻璃上,那么有多少单位的光能穿过所有 \(n\) 层玻璃呢? 输入格式 第一行一个正整数 \(n\),表示玻璃层数.…