概率派VS贝叶斯派】的更多相关文章

频率派 贝叶斯派 theta是个未知的常量,X是随机变量, theta是个随机变量,X是随机变量 MLE最大似然估计 MAE最大后验概率 统计机器学习,优化问题 1)建立模型.概率 2)定义损失函数 3)梯度下降/牛顿法求解 概率图模型 求积分(用蒙特卡洛方法取样)…
机器学习中的MLE和MAP两大学派的争论: 频率学派 - Frequentist - Maximum Likelihood Estimation (MLE,最大似然估计): 频率学派认为世界是确定的,有一个本体,这个本体的真值是不变的,我们的目标就是要找到这个真值或真值所在的范围. 贝叶斯学派 - Bayesian - Maximum A Posteriori (MAP,最大后验估计): 贝叶斯学派认为世界是不确定的,人们对世界先有一个预判,而后通过观测数据对这个预判做调整,我们的目标是要找到最…
贝叶斯推理的方法非常自然和极其强大.然而,大多数图书讨论贝叶斯推理,依赖于非常复杂的数学分析和人工的例子,使没有强大数学背景的人无法接触.<贝叶斯方法概率编程与贝叶斯推断>从编程.计算的角度来介绍贝叶斯推理,把贝叶斯理论和编程实践结合起来,使大多数程序员都可以入门并掌握.通过强大的Python语言库PyMC,以及相关的Python工具,包括NumPy\SciPy\Matplotlib讲解了概率编程.通过介绍的方法,只需付出很少的努力,就能掌握有效的贝叶斯分析方法. 学习参考: <贝叶斯方…
1. 写在之前的话 0x1:贝叶斯推断的思想 我们从一个例子开始我们本文的讨论.小明是一个编程老手,但是依然坚信bug仍有可能在代码中存在.于是,在实现了一段特别难的算法之后,他开始决定先来一个简单的测试用例,这个用例通过了.接着,他用了一个稍微复杂的测试用例,再次通过了.接下来更难的测试用例也通过了,这时,小明开始觉得这段代码出现bug的可能性大大大大降低了.... 上面这段白话文中,已经包含了最质朴的贝叶斯思想了!简单来说,贝叶斯推断是通过新得到的证据不断地更新我们的信念. 贝叶斯推断很少会…
2019年08月31日更新 看了一篇发在NM上的文章才又明白了贝叶斯方法的重要性和普适性,结合目前最火的DL,会有意想不到的结果. 目前一些最直觉性的理解: 概率的核心就是可能性空间一定,三体世界不会有概率 贝叶斯的基础就是条件概率,条件概率的核心就是可能性空间的缩小,获取了新的信息就是个可能性空间缩小的过程 贝叶斯定理的核心就是,先验*似然=后验,有张图可以完美可视化这个定理 只要我们能得到可靠的先验或似然,任意一个,我们就能得到更可靠的后验概率 最近又在刷一个Coursera的课程:Baye…
一.一些概念 互信息: 两个随机变量x和Y的互信息,定义X, Y的联合分布和独立分布乘积的相对熵. 贝叶斯公式: 贝叶斯带来的思考: 给定某些样本D,在这些样本中计算某结论出现的概率,即 给定样本D 所以可以推出,再假定p(Ai)相等,可以推出,这个就是最大似然估计做的事情,看下取哪个参数的时候,D出现的概率最大,最大似然估计其实假定了任何参数被取到的概率都是一样的. 二.贝叶斯网络 随机变量之间并不是独立,而是存在复杂的网络关系.贝叶斯网络又称为有向无环图模型,是一个概率图模型(PGM),根据…
1. 从贝叶斯方法(思想)说起 - 我对世界的看法随世界变化而随时变化 用一句话概括贝叶斯方法创始人Thomas Bayes的观点就是:任何时候,我对世界总有一个主观的先验判断,但是这个判断会随着世界的真实变化而随机修正,我对世界永远保持开放的态度. 1763年,民间科学家Thomas Bayes发表了一篇名为<An essay towards solving a problem in the doctrine of chances>的论文, 这篇论文发表后,在当时并未产生多少影响,但是在20…
离去年“马尔可夫链进行彩票预测”已经一年了,同时我也计划了一个彩票数据框架的搭建,分析和预测的框架,会在今年逐步发表,拟定了一个目录,大家有什么样的意见和和问题,可以看看,留言我会在后面的文章中逐步改善:彩票数据框架与分析预测总目录.同时这篇文章也是“[彩票]彩票预测算法(一):离散型马尔可夫链模型C#实现”的兄弟篇.所以这篇文章还有一个标题,应该是:[彩票]彩票预测算法(二):朴素贝叶斯分类器在足球胜平负预测中的应用及C#实现. 以前了解比较多的是SVM,RF,特征选择和聚类分析,实际也做过一…
Day15,开始学习朴素贝叶斯,先了解一下贝爷,以示敬意. 托马斯·贝叶斯 (Thomas Bayes),英国神学家.数学家.数理统计学家和哲学家,1702年出生于英国伦敦,做过神甫:1742年成为英国皇家学会会员:1763年4月7日逝世.贝叶斯曾是对概率论与统计的早期发展有重大影响的两位(贝叶斯和布莱斯·帕斯卡Blaise Pascal)人物之一. 贝叶斯在数学方面主要研究概率论.他首先将归纳推理法用于概率论基础理论,并创立了贝叶斯统计理论,对于统计决策函数.统计推断.统计的估算等做出了贡献.…
1. 贝叶斯网理论部分 笔者在另一篇文章中对贝叶斯网的理论部分进行了总结,在本文中,我们重点关注其在具体场景里的应用. 2. 从概率预测问题说起 0x1:条件概率预测模型之困 我们知道,朴素贝叶斯分类器和Logistic regression模型都是产生概率估计来代替硬性的分类.对于每个类值,它们都是估计某个实例属于这个类的概率. 实际上,大多数其他机器学习分类器都可以转化为产生这类信息的模型,例如: 通过计算叶子节点上每类的相对频率,就能从决策树中得到概率 通过检验某条规则所覆盖的实例,就能从…