在数据挖掘的知识模式中,关联规则模式是比较重要的一种.关联规则的概念由Agrawal.Imielinski.Swami 提出,是数据中一种简单但很实用的规则.关联规则模式属于描述型模式,发现关联规则的算法属于无监督学习的方法. 一.关联规则的定义和属性 考察一些涉及许多物品的事务:事务1 中出现了物品甲,事务2 中出现了物品乙,事务3 中则同时出现了物品甲和乙.那么,物品甲和乙在事务中的出现相互之间是否有规律可循呢?在数据库的知识发现中,关联规则就是描述这种在一个事务中物品之间同时出现的规律的知…
在各种数据挖掘算法中,关联规则挖掘算是比較重要的一种,尤其是受购物篮分析的影响,关联规则被应用到非常多实际业务中,本文对关联规则挖掘做一个小的总结. 首先,和聚类算法一样,关联规则挖掘属于无监督学习方法,它描写叙述的是在一个事物中物品间同一时候出现的规律的知识模式,现实生活中,比方超市购物时,顾客购买记录经常隐含着非常多关联规则.比方购买圆珠笔的顾客中有65%也购买了笔记本.利用这些规则.商场人员能够非常好的规划商品摆放问题: 为叙述方便.设R= { I1,I2 ......Im} 是一组物品集…
关联规则挖掘算法在生活中的应用处处可见,几乎在各个电子商务网站上都可以看到其应用 举个简单的例子 如当当网,在你浏览一本书的时候,可以在页面中看到一些套餐推荐,本书+有关系的书1+有关系的书2+...+其他物品=多少¥ 而这些套餐就很有可能符合你的胃口,原本只想买一本书的你可能会因为这个推荐而买了整个套餐 这与userCF和itemCF不同的是,前两种是推荐类似的,或者你可能喜欢的商品列表 而关联规则挖掘的是n个商品是不是经常一起被购买,如果是,那个n个商品之中,有一个商品正在被浏览(有被购买的…
之前介绍的apriori算法中因为存在许多的缺陷,例如进行大量的全表扫描和计算量巨大的自然连接,所以现在几乎已经不再使用 在mahout的算法库中使用的是PFP算法,该算法是FPGrowth算法的分布式运行方式,其内部的算法结构和FPGrowth算法相差并不是十分巨大 所以这里首先介绍在单机内存中运行的FPGrowth算法 还是使用apriori算法的购物车数据作为例子,如下图所示: TID为购物车项的编号,i1-i5为商品的编号 FPGrowth算法的基本思想是,首先扫描整个购物车数据表,计算…
数据挖掘进阶之关联规则挖掘FP-Growth算法 绪 近期在写论文方面涉及到了数据挖掘,需要通过数据挖掘方法实现软件与用户间交互模式的获取.分析与分类研究.主要涉及到关联规则与序列模式挖掘两块.关联规则挖掘使用基于有趣性度量标准的FP-Growth算法,序列模式挖掘使用基于有趣性度量标准的GSP算法.若想实现以上优化算法,首先必须了解其基本算法,并编程实现.关键点还是在于理解算法思想,只有懂得了算法思想,对其进行优化操作易如反掌.源代码方面,其实是自己从网络中查找并进行阅读,在理解的基础上进行优…
转自:http://www.cnblogs.com/fengfenggirl/p/associate_apriori.html 数据挖掘系列 (1) 关联规则挖掘基本概念与 Aprior 算法 我计划整理数据挖掘的基本概念和算法,包括关联规则挖掘.分类.聚类的常用算法,敬请期待.今天讲的是关联规则挖掘的最基本的知识. 关联规则挖掘在电商.零售.大气物理.生物医学已经有了广泛的应用,本篇文章将介绍一些基本知识和 Aprori 算法. 啤酒与尿布的故事已经成为了关联规则挖掘的经典案例,还有人专门出了…
两种度量: 支持度(support)  support(A→B) = count(AUB)/N (N是数据库中记录的条数) 自信度(confidence)confidence(A→B) = count(AUB)/count(A) 关联规则挖掘的基本两个步骤: 1.找出所有的频繁项集 2.由频繁项集产生强关联规则 由于整个数据库十分庞大,所以对第一步来说,若使用穷举法,搜索空间将是2d,d是项的个数.所以优化算法主要需要优化第一步.而频繁项集里的项的数目远小于数据库数据的数目,所以,在第二步中,我…
前言 本篇继续我们的微软挖掘算法系列总结,前几篇我们分别介绍了:微软数据挖掘算法:Microsoft 决策树分析算法(1).微软数据挖掘算法:Microsoft 聚类分析算法(2).微软数据挖掘算法:Microsoft Naive Bayes 算法(3).微软数据挖掘算法:Microsoft 时序算法(5),后续还补充了二篇微软数据挖掘算法:结果预测篇(4).微软数据挖掘算法:Microsoft 时序算法之结果预测及其彩票预测(6),看样子有必要整理一篇目录了,不同的算法应用的场景也是不同的,每…
Apriori算法是一种挖掘关联规则的频繁项集算法,其核心思想是通过候选集生成和情节的向下封闭检测两个阶段来挖掘频繁项集. 关于这个算法有一个非常有名的故事:"尿布和啤酒".故事是这样的:美国的妇女们经常会嘱咐她们的丈夫下班后为孩子买尿布,而丈夫在买完尿布后又要顺 手买回自己爱喝的啤酒,因此啤酒和尿布在一起被购买的机会很多.这个举措使尿布和啤酒的销量双双增加,并一直为众商家所津津乐道. 关联规则应用: 1. Apriori算法应用广泛,可用于消费市场价格分析,猜测顾客的消费习惯,比如较…
Apriori算法  首先,Apriori算法是关联规则挖掘中很基础也很经典的一个算法. 转载来自:链接:https://www.jianshu.com/p/26d61b83492e 所以做如下补充: 关联规则:形如X→Y的蕴涵式,其中, X和Y分别称为关联规则的先导(antecedent或left-hand-side, LHS)和后继(consequent或right-hand-side, RHS) .其中,关联规则XY,存在支持度和信任度.     置信度:在所有的购买了左边商品的交易中,同…