HMM代码实现】的更多相关文章

按照网上的代码,自己敲了一下,改了一点点,理解加深了一下. 还有训练HMM的EM算法没看懂,下次接着看: 参考连接:http://www.cnblogs.com/hanahimi/p/4011765.html # -*- coding: utf-8 -*- ''' function: 根据网上的代码,学习实现 HMM,前向计算概率,后向预测状态序列,学习算法参数 date: 2017.8.9 ''' import numpy as np class HMM(object): ""&qu…
本文主要转载于:http://www.52nlp.cn/hmm-learn-best-practices-eight-summary 这个文章是边看边实践加上自己的一些想法生成的初稿..... 状态转移概率:M^2个状态转移 初始概率:pi向量,起始日天气的(或可能的)情况.(初始概率) 状态:三个状态——晴天,多云,雨天. pi向量:定义系统初始化时每一个状态的概率. 状态转移矩阵:给定前一天天气情况下的当前天气概率. 任何一个可以用这种方式描述的系统都是一个马尔科夫过程. 关于假设,重要的一…
1. 前言 隐马尔科夫HMM模型是一类重要的机器学习方法,其主要用于序列数据的分析,广泛应用于语音识别.文本翻译.序列预测.中文分词等多个领域.虽然近年来,由于RNN等深度学习方法的发展,HMM模型逐渐变得不怎么流行了,但并不意味着完全退出应用领域,甚至在一些轻量级的任务中仍有应用.本系列博客将详细剖析隐马尔科夫链HMM模型,同以往网络上绝大多数教程不同,本系列博客将更深入地分析HMM,不仅包括估计序列隐状态的维特比算法(HMM解码问题).前向后向算法等,而且还着重的分析HMM的EM训练过程,并…
目录 前言 目录 条件随机场(conditional random field CRF) 核心点 线性链条件随机场 简化形式 CRF分词 CRF VS HMM 代码实现 训练代码 实验结果 参考文献 前言 通过前面几篇系列文章,我们从分词中最基本的问题开始,并分别利用了1-gram和HMM的方法实现了分词demo.本篇博文在此基础上,重点介绍利用CRF来实现分词的方法,这也是一种基于字的分词方法,在将句子转换为序列标注问题之后,不使用HMM的生成模型方式,而是使用条件概率模型进行建模,即判别模型…
先来解释一下HMM的向前算法: 前向后向算法是前向算法和后向算法的统称,这两个算法都可以用来求HMM观测序列的概率.我们先来看看前向算法是如何求解这个问题的. 前向算法本质上属于动态规划的算法,也就是我们要通过找到局部状态递推的公式,这样一步步的从子问题的最优解拓展到整个问题的最优解.在这里我们认为随机过程中各个状态St的概率分布,只与它的前一个状态St-1有关,同时任何时刻的观察状态只仅仅依赖于当前时刻的隐藏状态. 在t时刻我们定义观察状态的概率为: αt(i)=P(o1,o2,...ot,i…
#HMM Forward algorithm #input Matrix A,B vector pi import numpy as np A=np.array([[0.5,0.2,0.3],[0.3,0.5,0.2],[0.2,0.3,0.5]]) B=np.array([[0.5,0.5],[0.4,0.6],[0.7,0.3]]) O=np.array([0 ,1, 0])#T=3 #O=np.array([1 ,0, 1])#T=3 pi=np.array([0.2,0.4,0.4])…
import numpy as np # -*- codeing:utf-8 -*- __author__ = 'youfei' # 隐状态 hidden_state = ['sunny', 'rainy'] # 观测序列 obsevition = ['walk', 'shop', 'clean'] # 根据观测序列.发射概率.状态转移矩阵.发射概率 # 返回最佳路径 def compute(obs, states, start_p, trans_p, emit_p): # max_p(3*2)…
什么是熵(Entropy) 简单来说,熵是表示物质系统状态的一种度量,用它老表征系统的无序程度.熵越大,系统越无序,意味着系统结构和运动的不确定和无规则:反之,,熵越小,系统越有序,意味着具有确定和有规则的运动状态.熵的中文意思是热量被温度除的商.负熵是物质系统有序化,组织化,复杂化状态的一种度量. 熵最早来原于物理学. 德国物理学家鲁道夫·克劳修斯首次提出熵的概念,用来表示任何一种能量在空间中分布的均匀程度,能量分布得越均匀,熵就越大. 一滴墨水滴在清水中,部成了一杯淡蓝色溶液 热水晾在空气中…
http://www.zhihu.com/question/20962240 Yang Eninala杜克大学 生物化学博士 线性代数 收录于 编辑推荐 •2216 人赞同 ×××××11月22日已更新××××× 隐马尔可夫(HMM)好讲,简单易懂不好讲.我认为 @者也的回答没什么错误,不过我想说个更通俗易懂的例子.我希望我的读者不是专家,而是对这个问题感兴趣的入门者,所以我会多阐述数学思想,少写公式.霍金曾经说过,你多写一个公式,就会少一半的读者.所以时间简史这本关于物理的书和麦当娜关于性的书…
本博客的目的:①总结自己的学习过程,相当于学习笔记 ②将自己的经验分享给大家,相互学习,互相交流,不可商用 内容难免出现问题,欢迎指正,交流,探讨,可以留言,也可以通过以下方式联系. 本人互联网技术爱好者,互联网技术发烧友 微博:伊直都在0221 QQ:951226918 -----------------------------------------------------------------------------------------------------------------…