微软研究院AI头条 https://mp.weixin.qq.com/s/SAz5eiSOLhsdz7nlSJ1xdA 预见未来丨机器学习:未来十年研究热点 机器学习组 微软研究院AI头条 昨天 编者按:自1998年成立以来,微软亚洲研究院一直致力于推动计算机科学领域的前沿技术发展.在建院20周年之际,我们特别邀请微软亚洲研究院不同领域的专家共同撰写“预见未来”系列文章,以各自领域的前瞻视角,从机器学习.计算机视觉.系统架构.图形学.自然语言处理等多个方向出发,试图描绘一幅未来科技蓝图. 本文中…
完成了课程1  机器学习基础:案例研究 贴个证书,继续努力完成后续的课程:…
我们都知道机器学习是一门综合性极强的研究课题,对数学知识要求很高.因此,对于非学术研究专业的程序员,如果希望能入门机器学习,最好的方向还是从实践触发. 我了解到Python的生态对入门机器学习很有帮助.因此希望以此作为突破口入门机器学习. 我将会记录一个系列的学习与实践记录.记录内容主要参考Youtube中sentdex发布的视频,有兴趣的读者可以自己FQ到油管看一下. 下面介绍一下我将如何通过Python入门机器学习. 学习Python基本语法 首先我在Python官网找到入门教程,快速过了一…
机器学习实战(Machine Learning in Action)学习笔记————09.利用PCA简化数据 关键字:PCA.主成分分析.降维作者:米仓山下时间:2018-11-15机器学习实战(Machine Learning in Action,@author: Peter Harrington)源码下载地址:https://www.manning.com/books/machine-learning-in-actiongit@github.com:pbharrin/machinelearn…
作者:知乎用户链接:https://www.zhihu.com/question/29187952/answer/48519630 我居然今天才看到这个问题,天……本专业,有幸听过他们这个实验的组会来解(che)答(dan)一下. 之前在陆朝阳组内开组会的时候师兄正好在做这个,我本科是这个专业的,之前看到他们paper发了,还有新闻,还和室友吐槽了一番.不过实验本身还好吧,中科大在这方面确实是世界领先的,所以结合一些其他学科做出些实验还是很有看点的,比如之前就有过用量子计算和生物学结合的实验,不…
前情回顾 机器学习100天|Day1数据预处理 100天搞定机器学习|Day2简单线性回归分析 100天搞定机器学习|Day3多元线性回归 100天搞定机器学习|Day4-6 逻辑回归 100天搞定机器学习|Day7 K-NN 100天搞定机器学习|Day8 逻辑回归的数学原理 100天搞定机器学习|Day9-12 支持向量机 100天搞定机器学习|Day11 实现KNN 100天搞定机器学习|Day13-14 SVM的实现 100天搞定机器学习|Day15 朴素贝叶斯 Day19,Avik-J…
Andrew Ng机器学习课程笔记(六)之 机器学习系统的设计 版权声明:本文为博主原创文章,转载请指明转载地址 http://www.cnblogs.com/fydeblog/p/7392408.html 前言 这篇博客主要记录了Andrew Ng课程第6章机器学习系统的设计,Andrew用他的丰富经验讲述了如何有效.耗时少地实现一个机器学习系统,内容包括误差分析,误差度量,查准率和查全率等等 I 首先要做什么 以一个垃圾邮件分类器算法为例,为了解决这样一个问题,我们首先要做的决定是如何选择并…
今天看到一条新闻,是关于LG模块化的手机,LG将手机电池模块化了,很多人一片叫好,但是我认为模块化手机无法成为未来的趋势,原因如下:模块化必然要增加手机的卡口.插口增,意味着体积也大大增加,手机正因为其小巧,可以拿在手上所以谓之“手机”.苹果可以说让电池内置这样的一种方式在手机业界形成了一个标准,LG这样的方式实为一种倒退.但这不是这篇文章的主要主题. 未来,手机会越来越精密,绝对不容任何不必要的空间存在于手机,现在的网速提升了,云盘发展也很迅速,所以手机去除了内存卡卡槽:我想未来世界各地的通讯…
http://blog.csdn.net/l281865263/article/details/50278745 本栏目(Machine learning)包括单参数的线性回归.多参数的线性回归.Octave Tutorial.Logistic Regression.Regularization.神经网络.机器学习系统设计.SVM(Support Vector Machines 支持向量机).聚类.降维.异常检测.大规模机器学习等章节.内容大多来自Standford公开课machine lear…
博客已经迁移到Marcovaldo's blog (http://marcovaldong.github.io/) 刚刚完毕了Andrew Ng在Cousera上的Machine Learning的第十周课程,这周主要介绍的是大规模机器学习.现将笔记整理在以下. Gradient Descent with Large Datasets Learning With Large Datasets 在前面介绍bias-variance的时候.我们曾提到一个比較各种算法孰优孰劣的实验,结论是"it's…