机器学习降维--PCA】的更多相关文章

1.原理和概念 PCA(Principal Component Analysis),即主成分分析方法,是一种使用最广泛的数据降维算法. PCA的主要思想是将n维特征映射到k维上,这k维是全新的正交特征也被称为主成分,是在原有n维特征的基础上重新构造出来的k维特征. PCA的工作就是从原始的空间中顺序地找一组相互正交的坐标轴,新的坐标轴的选择与数据本身是密切相关的. 其中,第一个新坐标轴选择是原始数据中方差最大的方向,第二个新坐标轴选取是与第一个坐标轴正交的平面中使得方差最大的,第三个轴是与第1,…
四大机器学习降维算法:PCA.LDA.LLE.Laplacian Eigenmaps 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法处理向量表达的数据,也有一些降维算法处理高阶张量表达的数据.之所以使用降维…
机器学习降维方法概括   版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/u014772862/article/details/52335970 最近刷题看到特征降维相关试题,发现自己了解的真是太少啦,只知道最简单的降维方法,这里列出了常见的降维方法,有些算法并没有详细推导.特征降维方法包括:Lasso,PCA,小波分析,LDA,奇异值分解SVD,拉普拉斯特征映射,SparseAutoEncoder,局部线性嵌入LLE,等距映射Isomap. 1…
机器学习算法-PCA降维 一.引言 在实际的数据分析问题中我们遇到的问题通常有较高维数的特征,在进行实际的数据分析的时候,我们并不会将所有的特征都用于算法的训练,而是挑选出我们认为可能对目标有影响的特征.比如在泰坦尼克号乘员生存预测的问题中我们会将姓名作为无用信息进行处理,这是我们可以从直观上比较好理解的.但是有些特征之间可能存在强相关关系,比如研究一个地区的发展状况,我们可能会选择该地区的GDP和人均消费水平这两个特征作为一个衡量指标.显然这两者之间是存在较强的相关关系,他们描述的都是该地区的…
一.基础理解 1) PCA 降维的基本原理 寻找另外一个坐标系,新坐标系中的坐标轴以此表示原来样本的重要程度,也就是主成分:取出前 k 个主成分,将数据映射到这 k 个坐标轴上,获得一个低维的数据集. 2)主成分分析法的本质 将数据集从一个坐标系转换到另一个坐标系,原坐标系有 n 个维度(n 中特征),则转换的新坐标系也有 n 个维度,每个主成分表示一个维度,只是对于转换后的坐标系,只取前 k 个维度(也就是前 k 个主成分),此 k 个维度相对于数据集更加重要,形成矩阵 Wk : 3)将 n…
最近在找降维的解决方案中,发现了下面的思路,后面可以按照这思路进行尝试下: 链接:http://www.36dsj.com/archives/26723 引言 机器学习领域中所谓的降维就是指采用某种映射方法,将原高维空间中的数据点映射到低维度的空间中.降维的本质是学习一个映射函数 f : x->y,其中x是原始数据点的表达,目前最多使用向量表达形式. y是数据点映射后的低维向量表达,通常y的维度小于x的维度(当然提高维度也是可以的).f可能是显式的或隐式的.线性的或非线性的. 目前大部分降维算法…
PCA(Principal Component Analysis) 一.指导思想 降维是实现数据优化的手段,主成分分析(PCA)是实现降维的手段: 降维是在训练算法模型前对数据集进行处理,会丢失信息. 降维后,如果丢失了过多的信息,在我们不能容忍的范围里,就不应该降维. 降维没有正确与否的标准,只有丢失信息的多少: 降维的方式本质是有无穷多种的.我们期望在其中找到“最好”,或者说“丢失信息”最少的那一种: PCA算法使用的是:降维后保持原始数据的方差的多少,来衡量降维后保持原始数据了多少信息:…
引言 当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质.而这些数学性质将成为PCA的理论基础. 理论描述 向量运算即:内积.首先,定义两个维数相同的向量的内积为: (a1,a2,⋯,an)T⋅(b1,b2,⋯,bn)T=a1b1+a2b2+⋯+anbn 内积运算将两个向量映射为一个实数.其计算方式非常容易理解,但是其意义并不明显.所以,我们分析内积的几何意义.假设A和B是两个n维向量,我们知道n维向量可以等价表示为n维空间中的一条从原点发射的有向线段,为了简单起见我们假设A和B均为…
样本 代码: import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.datasets import load_iris #加载鸢尾花数据集导入函数 data = load_iris()#加载数据,array([[5.1 3.5 1.4 0.2].....]) #print(data) y = data.target #各50个 0,1,2 暂不明作用, #print(y) X = da…
PCA降维识别手写数字 关注公众号"轻松学编程"了解更多. PCA 用于数据降维,减少运算时间,避免过拟合. PCA(n_components=150,whiten=True) n_components参数设置需要保留特征的数量,如果是小数,则表示保留特征的比例; 设为大于零的整数,会自动的选取n个主成分- whiten: 默认为False,若为True表示做白化处理,白化处理主要是为了使处理后的数据方差都一致 PCA降维识别手写数字 导包 import numpy as np imp…