[UOJ300]吉夫特】的更多相关文章

直接上lucas定理,可以得到$\binom nm=1$等价于$m$是$n$的子集(二进制) 因为数字两两不同,所以设$f_i$表示以$i$开头的满足要求的序列有多少个,转移就是$f_i\gets f_j+1(j\subset i,\text{pos}_j\gt\text{pos}_i)$,除了以$j$开头的子序列还可以单独把$j$接在$i$后 #include<stdio.h> const int mod=1000000007,N=233334; void inc(int&a,int…
BZOJ4903 UOJ300 CTSC2017 吉夫特 弱弱地放上题目链接 Lucas定理可以推一推,发现C(n,m)是奇数的条件是n" role="presentation">nn&m==m" role="presentation">m==mm==m,也就是说n是m的子集,这不就显然了吗 非常友好的枚举子集DP f[i]表示以i结尾的不下降序列的方案数什么的 #include<bits/stdc++.h> us…
Description 传送门 ​ 简述题意:给一个序列,询问有多少子序列满足其中不会出现\(a\choose b\)是偶数的情况,其中\(a\)在\(b\)前面. Solution 首先探究组合数的奇偶性问题.我们用Lucas定理展开组合数,可以发现一些有趣的性质: \[ {a\choose b}={\lfloor\frac a 2 \rfloor\choose \lfloor \frac b2\rfloor}{a\mod2 \choose b\mod 2} \] 后一个括号的值可以直接算:\…
uoj bzoj luogu sol 根据\(Lucas\)定理,\(\binom nm \mod 2=\binom{n\%2}{m\%2}\times\binom{n/2}{m/2}\mod 2\). 由于\(\binom{n\%2}{m\%2}\)的取值只可能是\(0\)或\(1\),以为我们希望\(\binom nm=1\mod 2\),所以\(\binom{n\%2}{m\%2}\)应该始终取值为\(1\).因为\(\binom 00=\binom 10=\binom 11=1,\bin…
题目描述 给出一个长度为 $n$ 的序列,求所有长度大于等于2的子序列个数,满足:对于子序列中任意两个相邻的数 $a$ 和 $b$ ($a$ 在 $b$ 前面),${a\choose b}\mod 2\neq 0$.答案对 $10^9+7$取模. 输入 第一行一个整数 $n$ . 接下来 $n$ 行,每行一个整数,这 $n$ 行中的第 $i$ 行,表示 $a_i$ . $1\le n\le 211985,1\le a_i\le 233333$ 输出 一行一个整数表示答案. 样例输入 415731…
[BZOJ4903][UOJ#300]吉夫特(卢卡斯定理,动态规划) 题面 UOJ BZOJ:给的UOJ的链接...... 题解 首先模的质数更小了,直接给定了\(2\).当然是卢卡斯定理了啊. 考虑一个组合数在什么情况下会是一个奇数.\(Lucas(n,m)\equiv Lucas(n/2,m/2)*Lucas(n\%2,m\%2)\).后面这个东西一共只有\(4\)种取值,我们大力讨论一下:\(C_{0}^0=1,C_{0}^1=0,C_1^0=1,C_1^1=1\).既然是一个奇数,证明\…
吉夫特 Time Limit: 15 Sec  Memory Limit: 512 MB[Submit][Status][Discuss] Description Input 第一行一个整数n. 接下来n行,每行一个整数,这n行中的第i行,表示ai. Output 一行一个整数表示答案. Sample Input 4 15 7 3 1 Sample Output 11 HINT Main idea 给定一个序列,问有多少个子序列满足相邻的数构成的组合数都为奇数. Solution 首先我们用Lu…
自己是有多么sb. 密钥 大家都说这是一道普及-的题,一年前我做不起,我可以说我太弱啦,我就普及组水平,今年我还是做不起…… 看大佬题解都是:开个桶就好啦! 我:你在说什么…… 首先把环拉成链,倍长. 如果确定$i$这个位置是起始位置,那么特征值就是$\sum\limits_{j=1}^{n-1} (p_j!=0 , sum(A_{i+1}...A_{i+j})>0) $. 那么我们先记录一个前缀和,后面所提到的$A$都是前缀和.$\sum\limits_{j=1}^{n-1} (p_j!=0…
题目描述 给你一个长度为\(n\)的数列\(a\),求有多少个长度\(\geq 2\)的不上升子序列\(a_{b_1},a_{b_2},\ldots,a_{b_k}\)满足 \[ \prod_{i=2}^k\binom{a_{b_{i-1}}}{a_{b_i}}\mod 2>0 \] 答案对\({10}^9+7\)取模. \(n\leq211985,a_i\leq 233333\) \(\forall i\neq j,a_i\neq a_j\) 题解 水题. 先忽略长度\(\geq 2\)这个条…
Description: 给定一个序列\(a_1,a_2,a_3...a_n\) 求有多少个不上升子序列: \(a_{b1},a_{b_2}...\) 满足 \(C_{a_{b1}}^{a_{b2}}*C_{a_{b2}}^{a_{b3}}*.....mod\ 2 >0\) 输出对\(10^9+7\)取模的结果 Hint: $ 1 ≤ n ≤ 211985, 1 ≤ ai ≤ 233333​\(.所有的\) a_i ​$互不相同 Solution: 由\(Lucas\)定理: $ C_n^m=C…