根据<统计学习方法>一书中的描述,条件随机场(conditional random field, CRF)是给定一组输入随机变量条件下另一组输出随机变量的条件概率分布模型,其特点是假设输出随机变量构成马尔科夫随机场. 条件随机场是一种判别式模型. 一.理解条件随机场 1.1 HMM简单介绍 HMM即隐马尔可夫模型,它是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而产生观测随机序列. 在这个过程中,不可观测的序列称为状态序…
信息检索概述 信息检索是当前应用十分广泛的一种技术,论文检索.搜索引擎都属于信息检索的范畴.通常,人们把信息检索问题抽象为:在文档集合D上,对于由关键词w[1] ... w[k]组成的查询串q,返回一个按查询q和文档d匹配度relevance(q, d)排序的相关文档列表D'. 对于这一问题,先后出现了布尔模型.向量模型等各种经典的信息检索模型,它们从不同的角度提出了自己的一套解决方案.布尔模型以集合的布尔运算为基础,查询效率高,但模型过于简单,无法有效地对不同文档进行排序,查询效果不佳.向量模…
本文主要介绍隐马尔可夫模型以及该模型中的三大问题的解决方法. 隐马尔可夫模型的是处理序列问题的统计学模型,描述的过程为:由隐马尔科夫链随机生成不可观测的状态随机序列,然后各个状态分别生成一个观测,从而产生观测随机序列. 在这个过程中,不可观测的序列称为状态序列(state sequence), 由此产生的序列称为观测序列(observation sequence). 该过程可通过下图描述: 上图中, $X_1,X_2,…X_T$是隐含序列,而$O_1, O_2,..O_T$是观察序列. 隐马尔可…
监督学习的任务就是学习一个模型,应用这一模型,对给定的输入预测相应的输出.这个模型的一般形式为决策函数:$$ Y=f(X) $$或者条件概率分布:$$ P(Y|X) $$监督学习方法又可以分为生成方法(generative approach)和判别方法(discriminative approach).所学到的模型分别称为生成模型(generative model)和判别模型(discriminative model). 生成方法由数据学习联合概率分布P(X,Y),然后求出条件概率分布P(Y|X…
今天我们聊聊机器学习中出现的非常频繁的问题:过拟合与规则化.我们先简单的来理解下常用的L0.L1.L2和核范数规则化.最后聊下规则化项参数的选择问题.这里因为篇幅比较庞大,为了不吓到大家,我将这个五个部分分成两篇博文.知识有限,以下都是我一些浅显的看法,如果理解存在错误,希望大家不吝指正.谢谢. 监督机器学习问题无非就是“minimizeyour error while regularizing your parameters”,也就是在规则化参数的同时最小化误差.最小化误差是为了让我们的模型拟…
EM算法,全称Expectation Maximization Algorithm,译作最大期望化算法或期望最大算法,是机器学习十大算法之一,吴军博士在<数学之美>书中称其为“上帝视角”算法,其重要性可见一斑. EM算法是一种迭代算法,用于含有隐变量(hidden variable)的概率参数模型的最大似然估计或极大后验概率估计.它与极大似然估计的区别就是它在迭代过程中依赖极大似然估计方法.极大似然估计是在模型已知的情况下,求解模型的参数$\theta$,让抽样出现的概率最大.类似于求解一元方…
维特比算法(Viterbi algorithm)是在一个用途非常广的算法,本科学通信的时候已经听过这个算法,最近在看 HMM(Hidden Markov model) 的时候也看到了这个算法.于是决定研究一下这个算法的原理及其具体实现,如果了解动态规划的同学应该很容易了解维特比算法,因为维特比算法的核心就是动态规划. 对于 HMM 而言,其中一个重要的任务就是要找出最有可能产生其观测序列的隐含序列.一般来说,HMM问题可由下面五个元素描述: 观测序列(observations):实际观测到的现象…
一.数据的标准化(normalization)和归一化 数据的标准化(normalization)是将数据按比例缩放,使之落入一个小的特定区间.在某些比较和评价的指标处理中经常会用到,去除数据的单位限制,将其转化为无量纲的纯数值,便于不同单位或量级的指标能够进行比较和加权.其中最典型的就是数据的归一化处理,即将数据统一映射到[0,1]区间上. 目前数据标准化方法有多种,归结起来可以分为直线型方法(如极值法.标准差法).折线型方法(如三折线法).曲线型方法(如半正态性分布).不同的标准化方法,对系…
在求取有约束条件的优化问题时,拉格朗日乘子法(Lagrange Multiplier) 和KKT条件是非常重要的两个求取方法,对于等式约束的优化问题,可以应用拉格朗日乘子法去求取最优值:如果含有不等式约束,可以应用KKT条件去求取.当然,这两个方法求得的结果只是必要条件,只有当是凸函数的情况下,才能保证是充分必要条件.KKT条件是拉格朗日乘子法的泛化.之前学习的时候,只知道直接应用两个方法,但是却不知道为什么拉格朗日乘子法(Lagrange Multiplier) 和KKT条件能够起作用,为什么…
@ 目录 前言 二阶与三阶行列式 二阶行列式 三阶行列式 全排列及其逆序数 全排列 逆序数 结语 前言 Hello!小伙伴! 非常感谢您阅读海轰的文章,倘若文中有错误的地方,欢迎您指出-   自我介绍 ଘ(੭ˊᵕˋ)੭ 昵称:海轰 标签:程序猿|C++选手|学生 简介:因C语言结识编程,随后转入计算机专业,有幸拿过一些国奖.省奖...已保研.目前正在学习C++/Linux/Python 学习经验:扎实基础 + 多做笔记 + 多敲代码 + 多思考 + 学好英语!   机器学习小白阶段 文章仅作为自…