论文地址:深度噪声抑制模型的性能优化 引用格式:Chee J, Braun S, Gopal V, et al. Performance optimizations on deep noise suppression models[J]. arXiv preprint arXiv:2110.0437…
论文地址:一种新的基于循环神经网络的远场语音通信实时噪声抑制算法 引用格式:Chen B, Zhou Y, Ma Y, et al. A New Real-Time Noise Suppression Algorithm for Far-Field Speech Communication Based on Recurrent Neural Network[C]//2021 IEEE International Conference on Signal Processing, Communica…
ImageNet Classification with Deep Convolutional Neural Networks 深度卷积神经网络的ImageNet分类 Alex Krizhevsky University of Toronto 多伦多大学 kriz@cs.utoronto.ca Ilya Sutskever University of Toronto 多伦多大学 ilya@cs.utoronto.ca Geoffrey E. Hinton University of Toront…
目录 摘要 1.引言 2.BinaryConnect 2.1 +1 or -1 2.2确定性与随机性二值化 2.3 Propagations vs updates 2.4 Clipping 2.5 A few more tricks 2.6 Test-Time Inference 3 Benchmark results 3.1 Permutation-invariant MNIST 3.2 CIFAR-10 3.3 SVHN 4 Related works 5. Conclusion and f…
目录 摘要 引言 1.BinaryNet 符号函数 梯度计算和累积 通过离散化传播梯度 一些有用的成分 算法1 使用BinaryNet训练DNN 算法2 批量标准化转换(Ioffe和Szegedy,2015),适用于小批量激活x. 算法3 ADAM学习规则(Kingma&Ba,2014). 2.基准测试结果 MLP on MNIST ConvNet on CIFAR-10 ConvNet on SVHN 3.在运行时更快 第一层 4.相关工作 结论 参考资料 论文地址:https://arxiv…
论文地址:https://ieeexplore.ieee.org/abstract/document/9414462 ICASSP 2021声学回声消除挑战:结合时间对准的自适应回声消除和基于深度学习的残余回声加噪声抑制 摘要: 本文描述了一种用于ICASSP 2021年声学回声消除挑战赛的三级声学回声消除和抑制框架.第一阶段采用分块频域自适应滤波,在不引入近端语音失真的情况下消除线性回声分量,并预先补偿远端参考信号与麦克风信号之间的时延.在第二阶段,提出了一种结合门控循环单元的深复杂U-Net…
论文地址:两阶段深度网络的解耦幅度和相位优化 论文代码: 引用格式:Li A, Liu W, Luo X, et al. ICASSP 2021 deep noise suppression challenge: Decoupling magnitude and phase optimization with a two-stage deep network[C]//ICASSP 2021-2021 IEEE International Conference on Acoustics, Spee…
论文地址:DeepFilterNet:基于深度滤波的全频带音频低复杂度语音增强框架 论文代码:https://github.com/ Rikorose/DeepFilterNet 引用:Schröter H, Rosenkranz T, Maier A. DeepFilterNet: A Low Complexity Speech Enhancement Framework for Full-Band Audio based on Deep Filtering[J]. arXiv preprin…
论文地址:DCCRN:用于相位感知语音增强的深度复杂卷积循环网络 论文代码:https://paperswithcode.com/paper/dccrn-deep-complex-convolution-recurrent-1 引用:Hu Y,Liu Y,Lv S,et al. DCCRN: Deep complex convolution recurrent network for phase-aware speech enhancement[J]. arXiv preprint arXiv:…
论文作者:Xiang Hao, Xiangdong Su, Radu Horaud, and Xiaofei Li 翻译作者:凌逆战 论文地址:Fullsubnet:实时单通道语音增强的全频带和子频带融合模型 代码:https://github.com/haoxiangsnr/FullSubNet 摘要 本文提出了一种用于单通道实时语音增强的全频带和子频带融合模型FullSubNet.全频带和子频带是指分别输入全频带和子频带噪声频谱特征,输出全频带和子频带语音目标的模型.子带模型独立处理每个频率…