papers地址:https://arxiv.org/pdf/1708.05027.pdf 借用论文开头,目前很多的算法任务都是需要使用category feature,而一般对于category feature处理的方式是经过one hot编码,然后我们有些情况下,category feature 对应取值较多时,如:ID等,one hot 编码后,数据会变得非常的稀疏,不仅给算法带来空间上的复杂度,算法收敛也存在一定的挑战. 为了能解决one hot 编码带来的数据稀疏性的问题,我们往往能想…
论文地址:https://arxiv.org/pdf/1703.04247.pdf CTR预估我们知道在比较多的应用场景下都有使用.如:搜索排序.推荐系统等都有广泛的应用.并且CTR具有极其重要的 地位,特别相对广告推荐领域来说更加如此,竞价广告需要通过ctr给出相应的价格,并由此获得广告曝光的机会.而ctr的大小决定了出价的高低,直接会影响到该广告是否能得到曝光机会.这里涉及到计算广告相关的知识,暂时就不展开讲了.这里主要介绍一下DeepFM该算法的基本原理和网络框架. 论文总体来看还是相对比…
  近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文将对 FM 框架进行简介,并对其训练算法 - 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行具体推导. 相关链接: (一)预測任务 (二)模型方程 (三)回归和分类 (四)学习算法 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaXRwbHVz/f…
  近期学习了一种叫做 Factorization Machines(简称 FM)的算法.它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文将对 FM 框架进行简介.并对其训练算法 - 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行具体推导. 相关链接: (一)预測任务 (二)模型方程 (三)回归和分类 (四)学习算法 watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvaXRwbHVz/f…
  近期学习了一种叫做 Factorization Machines(简称 FM)的算法,它可对随意的实值向量进行预測.其主要长处包含: 1) 可用于高度稀疏数据场景:2) 具有线性的计算复杂度.本文将对 FM 框架进行简介,并对其训练算法 - 随机梯度下降(SGD)法和交替最小二乘(ALS)法进行具体推导. 相关链接: (一)预測任务 (二)模型方程 (三)回归和分类 (四)学习算法 作者: peghoty 出处: http://blog.csdn.net/itplus/article/det…
Faster R-CNN在Fast R-CNN的基础上的改进就是不再使用选择性搜索方法来提取框,效率慢,而是使用RPN网络来取代选择性搜索方法,不仅提高了速度,精确度也更高了 Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks 依靠于区域推荐算法(region proposal algorithms)去假定目标位置的最优的目标检测网络.之前的工作如SPPnet和Fast RCNN都减少了检测…
A³CLNN: Spatial, Spectral and Multiscale Attention ConvLSTM Neural Network for Multisource Remote Sensing Data Classification 有效利用信息多个数据源的问题已成为遥感领域一个相关但具有挑战性的研究课题.在本文中,我们提出了一种新的方法来利用两个数据源的互补性:高光谱图像(HSI)和光检测与测距(LiDAR)数据.具体来说,我们开发了一种新的双通道空间,频谱和多尺度注意力卷积…
对于分解机(Factorization Machines,FM)推荐算法原理,本来想自己单独写一篇的.但是看到peghoty写的FM不光简单易懂,而且排版也非常好,因此转载过来,自己就不再单独写FM了.…
结合上升采样upsample和卷积操作.Sub-piexl convolution. Efficient Sub-pixel-convolutional-layers. LR network,即低分辨卷积网络.在upsample的过程中对图像就进行了卷积. HR network,高分辨卷积网络,一般HR network是现将低分辨力的图像进行二次插值变换后然后对变换后的图像再进行卷积网络.像HR network是先将图像进行upsample后才进行卷积. 得到r^2个通道特征图然后通过周期筛选(…
<Explaining and harnessing adversarial examples> 论文学习报告 组员:裴建新   赖妍菱    周子玉 2020-03-27 1 背景 Szegedy有一个有趣的发现:有几种机器学习模型,包括最先进的神经网络,很容易遇到对抗性的例子.所谓的对抗性样例就是对数据集中的数据添加一个很小的扰动而形成的输入.在许多情况下,在训练数据的不同子集上训练不同体系结构的各种各样的模型错误地分类了相同的对抗性示例.这表明,对抗性例子暴露了我们训练算法中的基本盲点.…