在使用Sklearn进行加载自带的数据集MNIST时,总是报错,代码及相应的错误显示如下: from sklearn.datasets import fetch_mldata mnist = fetch_mldata('MNIST original', transpose_data=True) 由于家中网速并不是太好,初步怀疑是由于网速或者是需要翻墙等原因导致下载不了数据,查阅些资料,发现上述两条语句是为了加载mnist.Mat,MATLAB格式的数据,解决方法就是先把mnist-origina…
使用sklearn中的fetch_mldata的错误情况以及可能可行的解决方法 在notebook使用的时候出现了报错 from sklearn.datasets import fetch_mldata 报错信息为 ImportError: cannot import name 'fetch_mldata' from 'sklearn.datasets' 界面如下 看了网上的建议解决 https://github.com/ageron/handson-ml/issues/529 貌似是因为fet…
今天在学习PCA的时候,使用mnist数据集遇到一个问题,代码是这样的: import numpy as np from sklearn.datasets import fetch_mldata mnist = fetch_mldata("MNIST original") 遇到了报错:[WinError 10060] 由于连接方在一段时间后没有正确答复或连接的主机没有反应,连接尝试失败. 原因: 以为是源地址被墙了,就搭梯子试试,结果还是不行 搜了一下原因,是因为源地址已经不能用了 解…
写在前面 之前只停留在理论上,没有实际沉下心去调参,实际去做了后,发现调参是个大工程(玄学).于是这篇来总结一下sklearn中svm的参数说明以及调参经验.方便以后查询和回忆. 常用核函数 1.linear核函数: K(xi,xj)=xTixjK(xi,xj)=xiTxj 2.polynomial核函数: K(xi,xj)=(γxTixj+r)d,d>1K(xi,xj)=(γxiTxj+r)d,d>1 3.RBF核函数(高斯核函数): K(xi,xj)=exp(−γ||xi−xj||2),γ…
tensorflow中使用mnist数据集训练全连接神经网络 ——学习曹健老师“人工智能实践:tensorflow笔记”的学习笔记, 感谢曹老师 前期准备:mnist数据集下载,并存入data目录: 文件列表:四个文件,分别为训练和测试集数据 Four files are available on 官网  http://yann.lecun.com/exdb/mnist/ : train-images-idx3-ubyte.gz:  training set images (9912422 by…
原创博文,转载请注明出处!本文代码的github地址    博客索引地址 1.数据集 数据集使用sklearn自带的手写数字识别数据集mnist,通过函数datasets导入.mnist共1797个样本,8*8个特征,标签为0~9十个数字. ### 载入数据 from sklearn import datasets # 载入数据集 digits = datasets.load_digits() # 载入mnist数据集 print(digits.data.shape) # 打印输入空间维度 pr…
1 概述 1.1 决策树是如何工作的 1.2 构建决策树 1.2.1 ID3算法构建决策树 1.2.2 简单实例 1.2.3 ID3的局限性 1.3 C4.5算法 & CART算法 1.3.1 修改局部最优化条件 1.3.2 连续变量处理手段 1.4 sklearn中的决策树 2 DecisionTreeClassifier与红酒数据集 2.1 重要参数 2.1.1 criterion 2.1.2 random_state & splitter 2.1.3 剪枝参数 2.1.4 目标权重参…
sklearn提供的自带的数据集   sklearn 的数据集有好多个种 自带的小数据集(packaged dataset):sklearn.datasets.load_<name> 可在线下载的数据集(Downloaded Dataset):sklearn.datasets.fetch_<name> 计算机生成的数据集(Generated Dataset):sklearn.datasets.make_<name> svmlight/libsvm格式的数据集:sklea…
在将sklearn中的模型持久化时,使用sklearn.pipeline.Pipeline(steps, memory=None)将各个步骤串联起来可以很方便地保存模型. 例如,首先对数据进行了PCA降维,然后使用logistic regression进行分类,如果不使用pipeline,那么我们将分别保存两部分内容,一部分是PCA模型,一部分是logistic regression模型,稍微有点不方便.(当然,这么做也完全可以,使用Pipeline只是提供个方便罢了) 1.Pipeline中的…
一.sklearn中自带的回归算法 1. 算法 来自:https://my.oschina.net/kilosnow/blog/1619605 另外,skilearn中自带保存模型的方法,可以把训练完的模型在本地保存成.m文件,方法如下: skilearn保存模型方法 keras也可以把模型保存成.h5文件,方法如下: keras保存模型方法 pybrain可以把模型保存成xml文件,方法如下: pybrain保存模型方法 2. 评价标准 mae(平均绝对误差) 平均绝对误差是绝对误差的平均值,…