MapReduce原理——分而治之】的更多相关文章

一.MapReduce简介 二.MapReduce并行处理的基本过程 三.MapReduce实际处理流程 四.一个job的运行流程 一.MapReduce简介 MapReduce是一种并行可扩展计算模型,并且有较好的容错性,是一个分布式运算程序的编程框架,核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上,主要解决海量的离线数据的批处理,实现如下目标: 易于编程 良好的扩展性 高容错性 二.MapReduce并行处理的基本过程 一切都…
MapReduce原理与设计思想 简单解释 MapReduce 算法 一个有趣的例子:你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家数自己手中的牌有几张是黑桃,然后把这个数目汇报给你 你把所有玩家告诉你的数字加起来,得到最后的结论 拆分 MapReduce合并了两种经典函数: 映射(Mapping)对集合里的每个目标应用同一个操作.即,如果你想把表单里每个单元格乘以二,那么把这个函数单独地应用在…
MapReduce原理及源码解读 目录 MapReduce原理及源码解读 一.分片 灵魂拷问:为什么要分片? 1.1 对谁分片 1.2 长度是否为0 1.3 是否可以分片 1.4 分片的大小 1.5 开始分片 1.6 分片后读取会不会断行 二.Map阶段 2.1 实例化Mapper 2.2 调用map()方法 三.Shuffle阶段 灵魂拷问:哪来的Shuffle? 3.1 shuffle的概念 3.2 Map端Shuffle 3.2.1 分区(partition) 3.2.2 写入环形缓冲区…
大数据实战(上) # MapReduce原理介绍 大纲: * Mapreduce介绍 * MapReduce2运行原理 * shuffle及排序    定义 * Mapreduce 最早是由google公司研究提出的一种免息nag大规模数据处理的并行计算模型和方法.是hadoop面向大数据并行处理的计算模型.框架和平台 * Mapreduce是一个计算框架,既然是做计算的框架,那么表现形式就是有个输入(input),mapreduce操作这个输入(input),通过本身定义好的计算模型,得到一个…
大数据运算模型 MapReduce 原理 2016-01-24 杜亦舒 MapReduce 是一个大数据集合的并行运算模型,由google提出,现在流行的hadoop中也使用了MapReduce作为计算模型 MapReduce 通俗解释 图书馆要清点图书数量,有10个书架,管理员为了加快统计速度,找来了10个同学,每个同学负责统计一个书架的图书数量张同学 统计 书架1王同学 统计 书架2刘同学 统计 书架3......过了一会儿,10个同学陆续到管理员这汇报自己的统计数字,管理员把各个数字加起来…
原文:http://www.infotech.ac.cn/article/2012/1003-3513-28-2-60.html MapReduce原理及其主要实现平台分析 亢丽芸, 王效岳, 白如江 摘要 关键词: MapReduce; 实现平台; Hadoop; Phoenix; Disco; Mars Analysis of MapReduce Principle and Its Main Implementation Platforms Kang Liyun, Wang Xiaoyue,…
Hapoop原理 Hadoop是一个开源的可运行于大规模集群上的分布式并行编程框架,其最核心的设计包括:MapReduce和HDFS.基于 Hadoop,你可以轻松地编写可处理海量数据的分布式并行程序,并将其运行于由成百上千个结点组成的大规模计算机集群上. 基于MapReduce计算模型编写分布式并行程序相对简单,程序员的主要工作就是设计实现Map和Reduce类,其它的并行编程中的种种复杂问题,如分布式存储,工作调度,负载平衡,容错处理,网络通信等,均由 MapReduce框架和HDFS文件系…
MapReduce概念 MapReduce是一种分布式计算模型,由谷歌提出,主要用于搜索领域,解决海量数据计算问题. MR由两个阶段组成:Map和Reduce,用户只需要实现map()和reduce()两个函数实现分布式计算. 这两个函数的形参是key,value对,表示函数的输入信息. MP执行流程 客户端提交给jobtracker,jobtracker分配给tasktracker. trasktracker会对任务进行mapper和reducer操作. MapReduce原理 一个map输入…
MapReduce原理 MapReduce原理 简单来说就是,一个大任务分成多个小的子任务(map),并行执行后,合并结果(reduce). 例子: 100GB的网站访问日志文件,找出访问次数最多的IP地址…
MapReduce 原理与 Python 实践 1. MapReduce 原理 以下是个人在MongoDB和Redis实际应用中总结的Map-Reduce的理解 Hadoop 的 MapReduce 是基于 Google - MapReduce: Simplified Data Processing on Large Clusters的一种实现.对 MapReduce 的基本介绍如下: MapReduce is a programming model and an associated impl…
MapReduce原理 WordCount例子 用mapreduce计算wordcount的例子: package org.apache.hadoop.examples; import java.io.IOException; import java.util.StringTokenizer; import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoo…
这里分析MapReduce原理并没用WordCount,目前没用过hadoop也没接触过大数据,感觉,只是感觉,在项目中,如果真的用到了MapReduce那待排序的肯定会更加实用. 先贴上源码 package examples; import java.io.DataInput; import java.io.DataOutput; import java.io.IOException; import java.text.SimpleDateFormat; import java.util.Da…
注意:本实验是对前述实验的延续,如果直接点开始实验进入则需要按先前学习的方法启动hadoop 部署节点操作系统为CentOS,防火墙和SElinux禁用,创建了一个shiyanlou用户并在系统根目录下创建/app目录,用于存放 Hadoop等组件运行包.因为该目录用于安装hadoop等组件程序,用户对shiyanlou必须赋予rwx权限(一般做法是root用户在根目录下 创建/app目录,并修改该目录拥有者为shiyanlou(chown –R shiyanlou:shiyanlou /app…
MapReduce MapReduce原理非常重要,hive与spark都是基于MR原理 MapReduce采用多进程,方便对每个任务资源控制和调配,但是进程消耗更多的启动时间,因此MR时效性不高.适合批量,高吞吐的数据处理.Spark采用的是多线程模型. MapReduce执行流程 Map过程 map函数开始产生输出时,并不是直接将数据写到磁盘,它利用缓冲的方式写到内存.每个map任务都有一个环形内存缓冲区用于存储任务输出.在默认情况下,缓冲区大小为100MB.一旦缓冲内容达到阈值(默认80%…
1.      环境配置 a)        配置系统环境变量HADOOP_HOME b)        把hadoop.dll文件放到c:/windows/System32目录下 c)        hadoop-2.6.0\share\hadoop\common\sources目录下hadoop-common-2.6.0-sources.jar文件中找到org\apache\hadoop\io\nativeio下NativeIO.java文件,复制到对应的Eclipse的project, N…
前言 上一篇我们分析了一个MapReduce在执行中的一些细节问题,这一篇分享的是MapReduce并行处理的基本过程和原理. Mapreduce是一个分布式运算程序的编程框架,是用户开发“基于hadoop的数据分析应用”的核心框架. Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上. 一.MapReduce并行处理的基本过程 首先要说明的是Hadoop2.0之前和Hadoop2.0之后的区别:  2.0之前只有M…
    一致性Hash算法. Hash算法是为了保证数据均匀的分布,例如有3个桶,分别是0号桶,1号桶和2号桶:现在有12个球,怎么样才能让12个球平均分布到3个桶中呢?使用Hash算法的做法是,将12个球从0开始编号,得到这样的一个序列:0,1,2,3,4,5,6,7,8,9,10,11.将这个序列中的每个值模3,不管数字是什么,得到的结果都是0,1,2,不会超过3,将结果为0的数字放入0号桶,结果为1的数子放入1号桶,结果为2的数字放入2号桶,12个球就均匀的分布到3个桶中,0,3,6,9,…
前面我们使用HDFS进行了相关的操作,也了解了HDFS的原理和机制,有了分布式文件系统我们如何去处理文件呢,这就的提到hadoop的第二个组成部分-MapReduce. MapReduce充分借鉴了分而治之的思想,将一个数据的处理过程分为Map(映射)和Reduce(处理)两步.那么用户只需要将数据以需要的格式交给reduce函数处理就能轻松实现分布式的计算,很多的工作都由mapReduce框架为我们封装好,大大简化了操作流程. 1 MapReduce的编程思想 MapReduce的设计思路来源…
简单解释 MapReduce 算法 一个有趣的例子 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家数自己手中的牌有几张是黑桃,然后把这个数目汇报给你 你把所有玩家告诉你的数字加起来,得到最后的结论 拆分 MapReduce合并了两种经典函数: 映射(Mapping)对集合里的每个目标应用同一个操作.即,如果你想把表单里每个单元格乘以二,那么把这个函数单独地应用在每个单元格上的操作就属于mappi…
看了两天的各种博客,终于把MapReduce的原理理解了个大概.花了1个小时画了个流程图.大家看看,有不对的地方欢迎指正. 关键步骤: Map, Reduce就不多说了.记录一下我看了很久的部分: 1. Shuffle :指的是从Map输出到Reduce输入之间的操作.期间有三次排序操作,Partition与Combine如果选择了也在Shuffle过程中. 2. Partitioner :是在使用多个Reduce端的时候决定数据发往哪个Reduce端的,默认是对Key哈希,保证同一个Key值的…
简介 本文主要介绍MapReduce V2的基本原理, 也是笔者在学习MR的学习笔记整理. 本文首先大概介绍下MRV2的客户端跟服务器交互的两个协议, 然后着重介绍MRV2的核心模块MRAppMaster(简称MRAM), 最后再介绍一些杂项知识点. [广告] 如果你喜欢本博客,请点此查看本博客所有文章:http://www.cnblogs.com/xuanku/p/index.html MR客户端 MR客户端通过两个协议来控制MR任务: ApplicationClientProtocol: 这…
剖析Mapreduce作业运行机制:原理如下图: 原理图的解释的可以分为以下几个部分 1.客户端提交一个mapreduce的jar包给JobClient 2.JocClient通过RPC和JobTracker进行通信,返回一个存放jar包的地址(HDFS) 3.JobClient将jar包写入到HDFS当中(path=hdfs上的地址(这个地址是有第二步的JobTracker返回的)+JobId) 将运行作业所需要的资源文件复制到HDFS上,包括MapReduce程序打包的JAR文件.配置文件和…
转自:http://www.cnblogs.com/wuyudong/p/mapreduce-principle.html 简单解释 MapReduce 算法 一个有趣的例子 你想数出一摞牌中有多少张黑桃.直观方式是一张一张检查并且数出有多少张是黑桃? MapReduce方法则是: 给在座的所有玩家中分配这摞牌 让每个玩家数自己手中的牌有几张是黑桃,然后把这个数目汇报给你 你把所有玩家告诉你的数字加起来,得到最后的结论 拆分 MapReduce合并了两种经典函数: 映射(Mapping)对集合里…
MapReduce是Google在2004年发表的论文<MapReduce: Simplified Data Processing on Large Clusters>中提出的一个用于分布式的用于大规模数据处理的编程模型. 原理 MapReduce将数据的处理分成了两个步骤,Map和Reduce.Map将输入的数据集拆分成一批KV对并输出,对于每一个<k1, v1>,Map将输出一批<k2, v2>:Reduce将Map对Map中产生的结果进行汇总,对于每一个<k…
前两篇文章介绍了HDFS的原理和高可用,下面再来介绍Hadoop的另外一个模块MapReduce.它的思想是很多技术的鼻祖,值得一学. MapReduce是什么 MapReduce是一个分布式计算系统,它可以类比为SQL里的select ...group by... 它被分为两个阶段.第一个阶段叫Map,它每次处理一条原始数据的映射.转换,并将中间结果合并.排序,生成Reduce阶段的输入数据.第二个阶段叫Reduce,它拉取Map处理好的数据做排序,一次处理一组数据,生成最终结果. 从上面的定…
看了几篇博文,感觉还是云里雾里的. http://blog.csdn.net/opennaive/article/details/7514146 http://www.aboutyun.com/thread-6723-1-1.html http://blog.csdn.net/thomas0yang/article/details/8562910 这三篇看下来,大概有了个框架,但是具体的细节都不是很清楚. 下面是自问自答环节: 为什么hadoop可以处理大数据? 因为hadoop用了好多好多好多…
参考http://www.cnblogs.com/wuyudong/p/mapreduce-principle.html MapReduce   我们来拆开看: Mapping(映射)对集合里的每个目标应用同一个操作. Reducing(化简)遍历集合中的元素来返回一个综合的结果. 主体思路是通过分散计算来分析大量数据. 1.大数据的并行化计算: 并行计算需要考虑如何划分计算任务或者计算数据以便对划分的子任务或数据块同时进行计算.但是,前后数据之间存在很强的依赖关系,只能串行计算. 一个大数据如…
1. 概述 Mapreduce是一个分布式运算程序的编程框架,是用户开发"基于hadoop的数据分析应用"的核心框架: Mapreduce核心功能是将用户编写的业务逻辑代码和自带默认组件整合成一个完整的分布式运算程序,并发运行在一个hadoop集群上: 1.1 MapReduce的诞生背景 背景原因:(1) 海量数据在单机上处理因为硬件资源限制,无法胜任:(2) 而一旦将单机版程序扩展到集群来分布式运行,将极大增加程序的复杂度和开发难度:(3) 引入mapreduce框架后,开发人员可…
一.概念MapReduce:"相同"的key为一组,调用一次reduce方法,方法内迭代这一组数据进行计算 块.分片.map.reduce.分组.分区之间对应关系block > split1:1:1个block可以切成1个分片N:1:多个block可以以切成1个分片1:N:1个block可以切成多个分片 split > map1:1:一个分片只能产生一个map map > reduceN:1:多个Map可以对应一次reduceN:N:多个Map可以对应多次reduce…
MapReduce的shuffle机制 1.概述 mapreduce中,map阶段处理的数据如何传递给reduce阶段,是mapreduce框架中最关键的一个流程,这个流程就叫shuffle: shuffle: 洗牌.发牌——(核心机制:数据分区,排序,缓存): 具体来说:就是将maptask输出的处理结果数据,分发给reducetask,并在分发的过程中,对数据按key进行了分区和排序: 2.主要流程 shuffle是MR处理流程中的一个过程,它的每一个处理步骤是分散在各个map task和r…