Java数据结构与算法(3):队列】的更多相关文章

队列.queue,就是现实生活中的排队. 1.简单队列: public class Queqe { private int array[]; private int front; private int end; private int number; private int max; private Queqe(int maxsize){ array = new int[maxsize]; max = maxsize; front = 0; end = 0; number = 0; } pri…
上一篇文章写了栈的相关知识,而本文会讲一下队列 队列是一种特殊的线性表,在尾部插入(入队Enqueue),从头部删除(出队Dequeue),和栈的特性相反,存取数据特点是:FIFO Java中queue源码: public interface Queue<E> extends Collection<E> { boolean add(E e); //添加一条数据到队尾,成功返回true,否则false boolean offer(E e); //添加一条数据到队尾,如果队列满了,会返…
  本篇是数据结构与算法的第三篇,本篇我们将来了解一下知识点: 队列的抽象数据类型 顺序队列的设计与实现 链式队列的设计与实现 队列应用的简单举例 优先队列的设置与实现双链表实现 队列的抽象数据类型   队列同样是一种特殊的线性表,其插入和删除的操作分别在表的两端进行,队列的特点就是先进先出(First In First Out).我们把向队列中插入元素的过程称为入队(Enqueue),删除元素的过程称为出队(Dequeue)并把允许入队的一端称为队尾,允许出的的一端称为队头,没有任何元素的队列…
  本篇是数据结构与算法的第三篇,本篇我们将来了解一下知识点: 队列的抽象数据类型 顺序队列的设计与实现 链式队列的设计与实现 队列应用的简单举例 优先队列的设置与实现双链表实现 队列的抽象数据类型   队列同样是一种特殊的线性表,其插入和删除的操作分别在表的两端进行,队列的特点就是先进先出(First In First Out).我们把向队列中插入元素的过程称为入队(Enqueue),删除元素的过程称为出队(Dequeue)并把允许入队的一端称为队尾,允许出的的一端称为队头,没有任何元素的队列…
队列也是一种表,不同的是队列在一端进行插入而在另一端进行删除. 队列模型 队列的基本操作包括入队.出队操作.在表的末端插入元素,在表的开头删除元素,即先进先出(FIFO). 队列的数组实现 对于每一个队列数据结构,保留一个数组items以及位置front和back,分别表示队列的两端,还要记录元素的个数size.操作过程应该是:当一个元素x入队,size和back增1,置items[back]=x:出队时,返回items[front],size减1,然后front增1. 初始队列: 入队: 出队…
直接上代码: public class CircleArrayQueueLvcai { private int[] array; private int maxSize;//循环队列大小 private int front; // 队列头, 这里约定初始值为0, private int rear ; //队列尾,初始值为0, 这里约定为 队列中最后一位元素的下一个位置(这样约定,意味着该队列的存储容量为 maxSize-1) //构造 public CircleArrayQueueLvcai(i…
Q: 栈.队列与数组的区别? A: 本篇主要涉及三种数据存储类型:栈.队列和优先级队列,它与数组主要有如下三个区别: A: (一)程序员工具 数组和其他的结构(栈.队列.链表.树等等)都适用于数据库应用中作为数据记录.它们常用于记录那些对应于现实世界的对象和活动的数据,如职员档案等,这些结构便于数据的访问:它们易于进行插入.删除和查找特定数据项的操作. 然而,本篇要讲解的数据结构和算法更多的是作为程序员的工具来运用.它们主要作为构思算法的辅助工具,而不是完全的数据存储工具.这些数据结构的生命周期…
前面我们介绍了三种数据结构,第一种数组主要用作数据存储,但是后面的两种栈和队列我们说主要作为程序功能实现的辅助工具,其中在介绍栈时我们知道栈可以用来做单词逆序,匹配关键字符等等,那它还有别的什么功能吗?以及数据结构与本篇博客的主题前缀.中缀.后缀表达式有什么关系呢? 1.人如何解析算术表达式 如何解析算术表达式?或者换种说法,遇到某个算术表达式,我们是如何计算的: ①.求值 3+4-5 这个表达式,我们在看到3+4后都不能直接计算3+4的值,知道看到4后面的 - 号,因为减号的优先级和前面的加号…
在Java数据结构和算法(五)——队列中我们介绍了优先级队列,优先级队列是一种抽象数据类型(ADT),它提供了删除最大(或最小)关键字值的数据项的方法,插入数据项的方法,优先级队列可以用有序数组来实现,这种实现方式尽管删除最大数据项的时间复杂度为O(1),但是插入还是需要较长的时间 O(N),因为每次插入平均需要移动一半的数据项,来保证插入后,数组依旧有序. 本篇博客我们介绍另外一种数据结构——堆,注意这里的堆和我们Java语言,C++语言等编程语言在内存中的“堆”是不一样的,这里的堆是一种树,…
堆的介绍 Q: 什么是堆? A: 这里的“堆”是指一种特殊的二叉树,不要和Java.C/C++等编程语言里的“堆”混淆,后者指的是程序员用new能得到的计算机内存的可用部分 A: 堆是有如下特点的二叉树: 1) 是一棵完全二叉树 2) 通常由数组实现.前面介绍了如何用数组表示树 3) 堆中的每个节点都满足堆的条件,即每个节点的关键字都大于(或等于)这个节点的子节点关键字 下图显示了堆与实现它的数组之间的关系:  A: 堆是完全二叉树的事实说明了表示堆的数组中没有“洞”,从下标0到N-1,每个元素…