1.kafka在高并发的情况下,如何避免消息丢失和消息重复? 消息丢失解决方案: 首先对kafka进行限速, 其次启用重试机制,重试间隔时间设置长一些,最后Kafka设置acks=all,即需要相应的所有处于ISR的分区都确认收到该消息后,才算发送成功 消息重复解决方案: 消息可以使用唯一id标识 生产者(ack=all 代表至少成功发送一次) 消费者 (offset手动提交,业务逻辑成功处理后,提交offset) 落表(主键或者唯一索引的方式,避免重复数据) 业务逻辑处理(选择唯一主键存储到R…
启动zookeeper和Kafka之后,进入kafka目录(安装/启动kafka参考前面一章:https://www.cnblogs.com/cici20166/p/9425613.html) 1.创建Topic 1)运行命令: ./bin/kafka-topics.sh --create --zookeeper localhost:2181 --replication-factor 1 --partitions 1 --topic test1 2181 是zookeeper 端口 图示为创建成…
启动zookeeper和Kafka之后,进入kafka目录(安装/启动kafka参考前面一章:https://www.cnblogs.com/cici20166/p/9425613.html) 1.创建Topic 1)运行命令: ./bin/kafka-topics.sh --create --zookeeper zk1:2181 --replication-factor 2 --partitions 3 --topic hello replication-factor:副本数,包含主节点,不能…
一  Kafka HA设计解析 1.1 为何需要Replication 在Kafka在0.8以前的版本中,是没有Replication的,一旦某一个Broker宕机,则其上所有的Partition数据都不可被消费,这与Kafka数据持久性及Delivery Guarantee的设计目标相悖.同时Producer都不能再将数据存于这些Partition中. 如果Producer使用同步模式则Producer会在尝试重新发送message.send.max.retries(默认值为3)次后抛出Exc…
1.Kafka概览 Apache下的项目Kafka(卡夫卡)是一个分布式流处理平台,它的流行是因为卡夫卡系统的设计和操作简单,能充分利用磁盘的顺序读写特性.kafka每秒钟能有百万条消息的吞吐量,因此很适合实时的数据流处理.例如kafka在线日志收集系统可作为flume的实时消息sink端,再通过kafka的消费者将消息实时写入hbase数据库中. 卡夫卡以topic分类对记录进行存储,每个记录包含key-value和timestamp. 1.1卡夫卡系统的组件.角色 broker: 每个正在运…
今天我司线上kafka消息代理出现错误日志,异常rebalance,而且平均间隔2到3分钟就会rebalance一次,分析日志发现比较严重.错误日志如下 08-09 11:01:11 131 pool-7-thread-3 ERROR [] - commit failed org.apache.kafka.clients.consumer.CommitFailedException: Commit cannot be completed since the group has already r…
一.kafka 简介 今社会各种应用系统诸如商业.社交.搜索.浏览等像信息工厂一样不断的生产出各种信息,在大数据时代,我们面临如下几个挑战: 如何收集这些巨大的信息 如何分析它 如何及时做到如上两点 以上几个挑战形成了一个业务需求模型,即生产者生产(produce)各种信息,消费者消费(consume)(处理分析)这些信息,而在生产者与消费者之间,需要一个沟通两者的桥梁-消息系统.从一个微观层面来说,这种需求也可理解为不同的系统之间如何传递消息. kafka是一种高吞吐量的分布式发布订阅消息系统…
面试题 为什么使用消息队列? 消息队列有什么优点和缺点? Kafka.ActiveMQ.RabbitMQ.RocketMQ 都有什么区别,以及适合哪些场景? 面试官心理分析 其实面试官主要是想看看: 第一,你知不知道你们系统里为什么要用消息队列这个东西? 不少候选人,说自己项目里用了 Redis.MQ,但是其实他并不知道自己为什么要用这个东西.其实说白了,就是为了用而用,或者是别人设计的架构,他从头到尾都没思考过. 没有对自己的架构问过为什么的人,一定是平时没有思考的人,面试官对这类候选人印象通…
原文:https://mp.weixin.qq.com/s/lpsQ3dEZHma9H0V_mcxuTw 一.资料文档 二.开发语言 三.支持的协议 四.消息存储 五.消息事务 六.负载均衡 七.集群方式 八.管理界面 九.可用性 十.消息重复 十一.吞吐量TPS 十二.订阅形式和消息分发 十三.顺序消息 十四.消息确认 十五.消息回溯 十六.消息重试 十七.并发度 本文将从,Kafka.RabbitMQ.ZeroMQ.RocketMQ.ActiveMQ 17 个方面综合对比作为消息队列使用时的…
来源:http://t.cn/RVDWcfe 一.资料文档 Kafka:中.有kafka作者自己写的书,网上资料也有一些.rabbitmq:多.有一些不错的书,网上资料多.zeromq:少.没有专门写zeromq的书,网上的资料多是一些代码的实现和简单介绍.rocketmq:少.没有专门写rocketmq的书,网上的资料良莠不齐,官方文档很简洁,但是对技术细节没有过多的描述.activemq:多.没有专门写activemq的书,网上资料多. 二.开发语言 Kafka:Scala rabbitmq…
分布式开放消息系统(RocketMQ)的原理与实践 RocketMQ基础:https://github.com/apache/rocketmq/tree/rocketmq-all-4.5.1/docs/cn 分布式消息系统作为实现分布式系统可扩展.可伸缩性的关键组件,需要具有高吞吐量.高可用等特点.而谈到消息系统的设计,就回避不了两个问题: 消息的顺序问题 消息的重复问题 RocketMQ作为阿里开源的一款高性能.高吞吐量的消息中间件,它是怎样来解决这两个问题的?RocketMQ 有哪些关键特性…
摘要 在这篇文章中,我将从消息在Kafka中的物理存储方式讲起,介绍分区-日志段-日志的各个层次. 然后我将接着上一篇文章的内容,把消费者的内容展开讲一讲,区分消费者与消费者组,以及这么设计有什么用. 根据消费者的消费可能引发的问题,我将介绍Kafka中的位移主题,以及消费者要怎么提交位移到这个位移主题中. 最后,我将聊一聊消费者Rebalance的原因,以及不足之处. 1. log 在上一篇文章中,我们提到了"partition"的概念. 我们那个时候所表达的意思是,消息的生产跟消费…
kafka架构,消息存储和生成消费模型,Kafka与其他队列对比,零拷贝,Kafka基本介绍 一.初识kafka 1.1SparkStreaming+Kafka好处: 1.2Kafka的架构: 二.kafka的消息存储和生成消费模型 三.kafka特点 四.kafka与其他消息队列对比 五.零拷贝 六.kafka概念 kafka思维导图下载地址 一.初识kafka kafka对消息保存时根据Topic进行归类,发送消息者成为Producer,消息接受者成为Consumer,此外kafka集群有多…
消息队列常见问题处理 分布式事务 什么是分布式事务 常见的分布式事务解决方案 基于 MQ 实现的分布式事务 本地消息表-最终一致性 MQ事务-最终一致性 RocketMQ中如何处理事务 Kafka中如何处理事务 RabbitMQ中的事务 消息防丢失 生产阶段防止消息丢失 RabbitMQ 中的防丢失措施 Kafka 中的防丢失措施 RocketMQ 中的防丢失措施 存储阶段 RabbitMQ 中的防丢失措施 Kafka 中的防丢失措施 RocketMQ 中的防丢失措施 消费阶段 消息重复发送 参…
  1.发送方   为保证消息到达exchange,在这个过程中不丢失.  用事务或者发送方确认机制  见<RabbitMQ实战指南>4.8节 2.为保证消息不会因为到达exchange后,无法路由到任何一个队列而丢失       解决方案一:发送方发送消息时 令mandatory参数=true,用ReturnListener异步接收没有任何队列接收而返回给发送方的消息.  见<RabbitMQ实战指南>4.1.1节       解决方案二:给exchange指定一个备份交换器及对…
在上一篇<Spring Cloud Stream如何处理消息重复消费>中,我们通过消费组的配置解决了多实例部署情况下消息重复消费这一入门时的常见问题.本文将继续说说在另外一个被经常问到的问题:如果微服务生产的消息自己也想要消费一份,应该如何实现呢? 常见错误 在放出标准答案前,先放出一个常见的错误姿势和告警信息(以便您可以通过搜索引擎找到这里^_^).以下错误基于Spring Boot 2.0.5.Spring Cloud Finchley SR1. 首先,根据入门示例,为了生产和消费消息,需…
实战一 , 实战二 介绍了ActiveMQ的基本概念和配置方式. 本篇将通过一个实例介绍使用spring发送,消费topic, queue类型消息的方法. 不懂topic和queue的google 之. 如图示, TOPIC和QUEUE分别代表一个topic和一个queue消息通道. TopicMessageProducer向topic发送消息, TopicConsumerA和TopicConsumerB则从topic消费消息. QueueMessageProducer向Queue发送消息, Q…
消息无序产生的原因 消息队列,既然是队列就能保证消息在进入队列,以及出队列的时候保证消息的有序性,显然这是在消息的生产端(Producer),但是往往在生产环境中有多个消息的消费端(Consumer),尽管消费端在拉取消息时是有序的,但各个消息由于网络等方面原因无法保证在各个消费端中处理时有序. 场景分析 先后两次修改了商品信息,消息A和消息B先后同步写入MySQL,接着异步写入消息队列中发送消息,此时消息队列生产端(Producer)按时序先后发出了A和B两条消息(消息A先发出,消息B后发出)…
继续上篇文章解决RabbitMQ消息丢失问题和保证消息可靠性(一) 未完成部分,我们聊聊MQ Server端的高可用和消费端如何保证消息不丢的问题? 回归上篇的内容,我们知道消息从生产端到服务端,为了保证消息不丢,我们必须做哪些事情? 发送端采用Confirm模式,注意Server端没成功通知发送端,需要重发操作需要额外处理 消息的持久化处理 上面两个操作保证消息到服务端不丢,但是非高可用状态,如果节点挂掉,服务暂时不可用,需要重启后,消息恢复,消息不会丢失,因为有磁盘存储. 本文先从消费端讲起…
在上一篇<Spring Cloud Stream如何处理消息重复消费>中,我们通过消费组的配置解决了多实例部署情况下消息重复消费这一入门时的常见问题.本文将继续说说在另外一个被经常问到的问题:如果微服务生产的消息自己也想要消费一份,应该如何实现呢? 常见错误 在放出标准答案前,先放出一个常见的错误姿势和告警信息(以便您可以通过搜索引擎找到这里^_^).以下错误基于Spring Boot 2.0.5.Spring Cloud Finchley SR1. 首先,根据入门示例,为了生产和消费消息,需…
接上文的集群模式,监听器返回RECONSUME_LATER,需要将将这些消息发送给Broker延迟消息.如果发送ack消息失败,将延迟5s后提交线程池进行消费. 入口:ConsumeMessageConcurrentlyService#sendMessageBack 命令编码:RequestCode.CONSUMER_SEND_MSG_BACK: MQClientAPIImpl#consumerSendMessageBack: public void consumerSendMessageBac…
前言 之前写了一篇文章,总体介绍了EQueue.在看这篇文章之前如果还没看过那篇文章,可能会看不懂这篇文章.所以建议没看过的朋友务必先看一下那篇文章中所提到的各种概念,这样才能更好的理解本文所说的内容.说实话我当初写EQueue也是抱着一种玩的态度的,就是想尝试写一个分布式消息队列,用来为ENode提供分布式消息通信的能力.后来写着写着,发现越来越好玩,因为觉得这个队列以后应该会很实用,所以就花了更多的时间去设计它,完善它.希望它最终能被更多的人使用.到目前为止,我觉得目前基本实现了以下特性:轻…
1. 消息顺序 场景:比如下单操作,下单成功之后,会发布创建订单和扣减库存消息,但扣减库存消息执行会先于创建订单消息,也就说前者执行成功之后,才能执行后者. 不保证完全按照顺序消费,在 MQ 层面支持消息的顺序处理开销太大,为了极少量的需求,增加整体上的复杂度得不偿失. 所以,还是在应用层面处理比较好,或者业务逻辑进行处理. 应用层解决方式: 1. 消息实体中增加:版本号 & 状态机 & msgid & parent_msgid,通过 parent_msgid 判断消息的顺序(需要…
概述 在上文中,我们讨论了消费者对于消息拉取的实现,对于 RocketMQ 这个黑盒的心脏部分,我们顺着消息的发送流程已经将其剖析了大半部分.本章我们不妨乘胜追击,接着讨论各种不同的消息的原理与实现. 事务消息 概念 RocketMQ 中的事务消息功能,实际上是 分布式事务中的本地事务表 的实现,只不过,在这里用消息中间件来代替了数据库,同时也帮我们做好了回查的操作. 在这点上,RocketMQ 和 Kafka 是截然不同的,kafka 的事务是用来实现 Exacltly Once 语义,且该语…
目录 消息存储 消息存储方式 非持久化 持久化 消息存储介质 消息存储与读写方式 消息存储结构 刷盘机制 同步刷盘 异步刷盘 小结 高可用 高可用实现 主从复制 负载均衡 消息重试 顺序消息重试 无序消息重试 死信队列 消息幂等 消息重复消费 消息幂等 消息存储 消息存储方式 非持久化 消息生成者发送消息到 MQ MQ 返回 ACK(Acknowledge Character)给生产者 MQ push 消息给对应的消费者 消息消费者返回 ACK 给 MQ 持久化 消息生成者发送消息到 MQ MQ…
上一篇:Window Azure ServiceBus Messaging消息队列技术系列2-编程SDK入门  http://www.cnblogs.com/tianqing/p/5944573.html 介绍了Azure Service Bus的编程SDK(主要的编程接口) 本文中我们以实际的使用场景来说明Azure Messaging是否支持以及如何编码实现:消息的收发顺序保证. 消息的收发在实际业务中往往是有顺序的:发送时1-2-3-4-5,接收时也必须是1-2-3-4-5,即FIFO特性…
“一切都是消息”--这是MSF(消息服务框架)的设计哲学. MSF的名字是 Message Service Framework 的简称,中文名称:消息服务框架,它是PDF.NET框架的一部分. 1,MSF诞生的背景 MSF最初来源于2009年,我们为某银行开发的基金投资分析系统,由于银行安全的原因并且这些投资资料属于机密资料,规定必须使用邮件系统来发送这些资料,但是邮件的收发不是直接针对人,而是两端的计算机程序.为了及时向客户发送这些投资资讯,我们使用WCF开发了基于邮件的通信系统.后来,从这套…
消息队列常用的有 rabitMQ.kafka等.缓存服务器  redis 也可以做消息队列使用,他们的特点对比如下 消息协议: 消息队列支持包括AMQP,MQTT,Stomp等,并且支持 JMS 规范,但Redis没有提供对这些协议的支持: 持久化:Redis无法对消息持久化存储,一旦消息被发送,如果没有订阅者接收,那么消息就会丢失: 消息保障:消息队列提供了消息传输保障,当客户端连接超时或事务回滚等情况发生时,消息会被重新发送给客户端,Redis没有提供消息传输保障.…
RabbitMQ 队列消息持久化 假如消息队列test里面还有消息等待消费者(consumers)去接收,但是这个时候服务器端宕机了,这个时候消息是否还在? 1.队列消息非持久化 服务端(producer): import pika # 声明一个socket 实例 connect = pika.BlockingConnection(pika.ConnectionParameters("localhost")) # 声明一个管道 channel = connect.channel() #…
原文:(二)RabbitMQ消息队列-RabbitMQ消息队列架构与基本概念 没错我还是没有讲怎么安装和写一个HelloWord,不过快了,这一章我们先了解下RabbitMQ的基本概念. RabbitMQ架构 说是架构其实更像是应用场景下的架构(自己画的有点丑,勿嫌弃) 从图中可以看出RabbitMQ主要由Exchange和Queue两部分组成,然后通过RoutingKey关联起来,消息投递到Exchange然后通过Queue接收. RabbitMQ消息队列基本概念 RabbitMQ Serve…