在上篇博客中,学习了二分搜索树:Java数据结构和算法(六)--二叉树,但是二分搜索树本身存在一个问题: 如果现在插入的数据为1,2,3,4,5,6,这样有序的数据,或者是逆序 这种情况下的二分搜索树和链表几乎完全一样,是最不平衡的二叉树了,二分搜索树的效率直接降到最低 如何解决上述问题: 使二分搜索树保持平衡二叉树的特征,而今天要讲述的AVL树是最经典的平衡二叉树了 满二叉树: 除了叶子节点其余节点都有左右两个子节点的树 完全二叉树: 对于一个树高为h的二叉树,如果其第0层至第h-1层的节点都…
AVL树 在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为1,所以它也被称为高度平衡树.增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An algorithm for the organization of information>中发表了它. 平衡因子:某结点的左子树与右子树的高度(深度)差即为该结点的平衡因子 AV…
AVL树 AVL树,也称平衡二叉搜索树,AVL是其发明者姓名简写.AVL树属于树的一种,而且它也是一棵二叉搜索树,不同的是他通过一定机制能保证二叉搜索树的平衡,平衡的二叉搜索树的查询效率更高. AVL树特点 AVL树是一棵二叉搜索树. AVL树的左右子节点也是AVL树. AVL树拥有二叉搜索树的所有基本特点. 每个节点的左右子节点的高度之差的绝对值最多为1,即平衡因子为范围为[-1,1]. 图中红色数字表示对应节点的高度,可以看到同一层的节点高度差都没有超过1. 二叉搜索树的平衡 基础的二叉搜索…
二叉查找树(BST).平衡二叉树(AVL树)(只有插入说明) 二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右…
平衡二叉树(AVL 树) 1 看一个案例(说明二叉排序树可能的问题) 给你一个数列{1,2,3,4,5,6},要求创建一颗二叉排序树(BST), 并分析问题所在.  左边 BST 存在的问题分析: 1) 左子树全部为空,从形式上看,更像一个单链表. 2) 插入速度没有影响 3) 查询速度明显降低(因为需要依次比较), 不能发挥 BST 的优势,因为每次还需要比较左子树,其查询速度比 单链表还慢 4) 解决方案-平衡二叉树(AVL)   2 基本介绍 1) 平衡二叉树也叫平衡二叉搜索树(Self…
目录 二叉排序树存在的问题 基本介绍 单旋转(左旋转) 树高度计算 旋转 右旋转 双旋转 完整代码 二叉排序树存在的问题 一个数列 {1,2,3,4,5,6},创建一颗二叉排序树(BST) 创建完成的树如上图所示,那么它存在的问题有以下几点: 左子树全部为空,从形式上看,更像一个单链表 插入速度没有影响 但查询速度明显降低 因为需要依次比较,不能利用二叉排序树的折半优势.而且每次都还要比较左子树,可能比单链表查询速度还慢. 那么解决这个劣势的方案就是:平衡二叉树(AVL). 基本介绍 平衡二叉树…
(百度百科)在计算机科学中,AVL树是最先发明的自平衡二叉查找树.在AVL树中任何节点的两个子树的高度最大差别为一,所以它也被称为高度平衡树.查找.插入和删除在平均和最坏情况下都是O(log n).增加和删除可能需要通过一次或多次树旋转来重新平衡这个树.AVL树得名于它的发明者 G.M. Adelson-Velsky 和 E.M. Landis,他们在 1962 年的论文 "An algorithm for the organization of information" 中发表了它.…
平衡二叉树(Balanced Binary Tree)是二叉查找树的一个进化体,也是第一个引入平衡概念的二叉树.1962年,G.M. Adelson-Velsky 和 E.M. Landis发明了这棵树,所以它又叫AVL树.平衡二叉树要求对于每一个节点来说,它的左右子树的高度之差不能超过1,如果插入或者删除一个节点使得高度之差大于1,就要进行节点之间的旋转,将二叉树重新维持在一个平衡状态.这个方案很好的解决了二叉查找树退化成链表的问题,把插入,查找,删除的时间复杂度最好情况和最坏情况都维持在O(…
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点.            在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…
二叉查找树(BST) 特殊的二叉树,又称为排序二叉树.二叉搜索树.二叉排序树. 二叉查找树实际上是数据域有序的二叉树,即对树上的每个结点,都满足其左子树上所有结点的数据域均小于或等于根结点的数据域,右子树上所有结点的数据域均大于根结点的数据域.如下图所示: 二叉查找树通常包含查找.插入.建树和删除操作. 二叉查找树的创建 对于一棵二叉查找树,其创建与二叉树的创建很类似,略有不同的是,二叉查找树,为了保证整棵树都关于根结点的大小呈左小右大的特征,在创建时,需要根据当前结点的大小来判断插入位置,给出…
学习过了二叉查找树,想必大家有遇到一个问题.例如,将一个数组{1,2,3,4}依次插入树的时候,形成了图1的情况.有建立树与没建立树对于数据的增删查改已经没有了任何帮助,反而增添了维护的成本.而只有建立的树如图2,才能够最大地体现二叉树的优点.            在上述的例子中,图2就是一棵平衡二叉树.科学家们提出平衡二叉树,就是为了让树的查找性能得到最大的体现(至少我是这样理解的,欢迎批评改正).下面进入今天的正题,平衡二叉树. AVL的定义 平衡二叉查找树:简称平衡二叉树.由前苏联的数学…
1.AVL树介绍 前面我们已经介绍了二叉搜索树.普通的二叉搜索树在插入.删除数据时可能使得全树的数据分布不平衡,退化,导致二叉搜索树最关键的查询效率急剧降低.这也引出了平衡二叉搜索树的概念,平衡二叉搜索树在此前的基础上,通过一系列的等价变换使二叉搜索树得以始终处于"平衡"的状态,拥有稳定且高效的查询效率. AVL树是最早被计算机科学家发明的自平衡二叉搜索树,AVL树得名于它的发明者G. M. Adelson-Velsky和E. M. Landis,他们在1962年的论文<An a…
AVL树是带有平衡条件的二叉查找树. 这个平衡条件必须保持,并且它必须保证树的深度是O(logN). 一棵AVL树是其每一个节点的左子树和右子树的高度最多差1的二叉查找树. (空树的高度定义为-1). 在插入以后.仅仅有那些从插入点到根节点的路径上的节点的平衡可能被改变,由于仅仅有这些节点的子树可能发生变化.当我们沿着这条路径上行到根并更新平衡信息时.我们能够找到一个节点,它的新平衡破坏了AVL条件.我们将指出怎样在第一个这种节点(即最深的节点)又一次平衡这棵树,并证明,这一又一次平衡保证整个树…
目录 什么是AVL树 1. 什么是AVL树 2. 节点的实现 3. AVL树的调整 3.1 LL旋转 3.2 RR旋转 3.3 RL旋转 3.4 LR旋转 什么是AVL树 二叉查找树的一个局限性就是有可能退化成一个链表,这种情况下二叉查找树的效率就会急剧下降变成0(n).而AVL树可以很好地解决BST的这种困境.本篇博客会介绍AVL树的基本特点和相关操作. 文章参考自博客:二叉树-你可能需要知道的知识点 1. 什么是AVL树 任何两个子树的高度差最大是1,这样的二叉树叫做AVL树. 先来确定几个…
平衡二叉树(Self-Balancing Binary Search Tree/Height-Balanced Binary Search Tree),是一种二叉排序树,当中每个节点的左子树和右子树的高度差至多等于1. 平衡二叉树的前提是二叉排序树,不是二叉排序树的都不是平衡二叉树. 平衡因子BF(Balance Factor):二叉树上节点的左子树深度减去右子树深度的值. 最小不平衡子树:距离插入节点近期的.且平衡因子的绝对值大于1的节点为根的子树. 下图中,新插入节点37时.距离它近期的平衡…
B树 B-树,就是B树,B树的原英文名是B-tree,所以很多翻译为B-树,就会很多人误以为B-树是一种树.B树是另外一种树.其实,B-tree就是B树. B-树的定义 B树(B-tree)是一种树状数据结构,是一种平衡的多路查找树,能够用来存储排序后的数据.这种数据结构能够让查找数据.循序存取.插入数据及删除的动作,都在对数时间内完成.B树,概括来说是一个一般化的二叉查找树,可以拥有多于2个子节点.与自平衡二叉查找树不同,B-树为系统最优化大块数据的读和写操作.B-tree算法减少定位记录时所…
看完了第一篇博客,相信大家对于平衡二叉树的插入调整以及删除调整已经有了一定的了解,下面,我们开始介绍代码部分. 首先,再次提一下使用的结构定义 typedef char KeyType; //关键字 typedef struct MyRcdType //记录 { KeyType key; }RcdType,*RcdArr; typedef enum MyBFStatus //为了方便平衡因子的赋值,这里进行枚举 { //RH,EH,LH分别表示右子树较高,左右子树等高,左子树较高 RH,EH,L…
树的主要算法有插入,查找,显示,遍历,删除,其中显示和删除略微复杂. package chap08.tree; import java.io.BufferedReader; import java.io.IOException; import java.io.InputStreamReader; import java.util.Stack; class Node { public int iData; public double dData; public Node leftChild; pu…
平衡二叉树的定义: 任意的左右子树高度差的绝对值不超过1,将这样的二叉树称为平衡二叉树,二叉平衡树前提是一个二叉排序树. 平衡二叉树的插入: 二叉平衡树在插入或删除一个结点时,先检查该操作是否导致了树的不平衡,若是,则在该路径上查找最小的不平衡树,调节其平衡. 4种平衡调整如下(结点的数字仅作标记作用): ①LL:右单旋转 ②RR:左单旋转 ③LR平衡旋转:先左后右 ④RL平衡旋转:先右后左 平衡二叉树查找:平衡二叉树查找过程等同于二叉排序树相同,因此平衡二叉树查找长度不超过数的长度,及其平均查…
概念 树 树是一类重要的非线性数据结构,是以分支关系定义的层次结构 定义: 树(tree)是n(n>0)个结点的有限集T,其中: 有且仅有一个特定的结点,称为树的根(root) 当n>1时,其余结点可分为m(m>0)个互不相交的有限集T1,T2,--Tm,其中每一个集合本身又是一棵树,称为根的子树(subtree) 特点: 树中至少有一个结点--根 树中各子树是互不相交的集合 基本术语 结点(node)--表示树中的元素,包括数据项及若干指向其子树的分支 结点的度(degree)--结点…
Radix树 Radix树,即基数树,也称压缩前缀树,是一种提供key-value存储查找的数据结构.与Trie不同的是,它对Trie树进行了空间优化,只有一个子节点的中间节点将被压缩.同样的,Radix树的插入.查询.删除操作的时间复杂度都为O(k). Radix树特点 一般由根节点.中间节点和叶子节点组成. 每个节点可以包含一个或多个字符. 树的叶子结点数即是数据条目数. 从根节点到某一节点经过路径的字符连起来即为该节点对应的字符串. 每个节点的所有子节点字符串都不相同. 插入操作 对rom…
B树 B树即平衡查找树,一般理解为平衡多路查找树,也称为B-树.B_树.是一种自平衡树状数据结构,能对存储的数据进行O(log n)的时间复杂度进行查找.插入和删除.B树一般较多用在存储系统上,比如数据库或文件系统. B树特点 B树可以定义一个m值作为预定范围,即m路(阶)B树. 每个节点最多有m个孩子. 每个节点至少有ceil(m/2)个孩子,除了根节点和叶子节点外. 对于根节点,子树个数范围为[2,m],节点内值的个数范围为[1,m-1]. 对于非根节点,节点内的值个数范围为[ceil(m/…
Trie树 概念 多叉树,节点为字符串中的单个字符. Trie 树的本质,就是利用字符串之间的公共前缀,将重复的前缀合并在一起. 将多个字符串按字符拆分插入Trie树,用于字符串查找,关键词提示等 举例:我们有 6 个字符串,它们分别是:how,hi,her,hello,so,see.我们希望在里面多次查找某个字符串是否存在,可组成如下Trie树: 实现 两个操作:将字符串集合构造成 Trie 树:在Trie树中查询一个字符串 假设我们的字符串中只有从 a 到 z 这 26 个小写字母,我们在数…
Trie树 Trie树,是一种搜索树,也称字典树或单词查找树,此外也称前缀树,因为某节点的后代存在共同的前缀.它的key都为字符串,能做到高效查询和插入,时间复杂度为O(k),k为字符串长度,缺点是如果大量字符串没有共同前缀时很耗内存.它的核心思想就是减少没必要的字符比较,使查询高效率,即用空间换时间,再利用共同前缀来提高查询效率. Trie树特点 根节点不包含字符,其他节点每个节点只包含一个字符. 从根节点到某一节点经过路径的字符连起来即为该节点对应的字符串. 每个节点的所有子节点字符都不相同…
删除操作 删除操作比较复杂,主要是因为删除的项可能在叶子节点上也可能在非叶子节点上,而且删除后可能导致不符合B树的规定,这里暂且称之为导致B树不平衡,于是要进行一些合并.左旋.右旋等操作,使之符合B树的规定(即让B树平衡).另外,如果是删除非叶子节点项需要先找到中序前驱来替换. 情况一 要删除的项在叶子节点上且不影响B树的平衡结构,比如删除“I”,从根节点开始查找,“I”大于“D”,往第二个分支, 逐一与节点内项的值进行比较,“I”大于“F”,继续比较,“I”大于“H”继续比较,“I”小于“K”…
B+树 B+树是B树的一种变体,也属于平衡多路查找树,大体结构与B树相同,包含根节点.内部节点和叶子节点.多用于数据库和操作系统的文件系统中,由于B+树内部节点不保存数据,所以能在内存中存放更多索引,增加缓存命中率.另外因为叶子节点相连遍历操作很方便,而且数据也具有顺序性,便于区间查找. B+树特点 B+树可以定义一个m值作为预定范围,即m路(阶)B+树. 根节点可能是叶子节点,也可能是包含两个或两个以上子节点的节点. 内部节点如果拥有k个关键字则有k+1个子节点. 非叶子节点不保存数据,只保存…
1. 从扩充二叉树到哈弗曼树 扩充二叉树:对二叉树 T,加入足够多的新叶节点(而不是任意),使 T 的原有结点都变成度数为 2 的分支节点,得到的二叉树称为 T 的扩充二叉树. 对于扩充二叉树而言, 扩充二叉树新增的结点称为其外部结点(external node): 原树 T 的结点称为内部结点(internal node): 规定空树的扩充二叉树仍为空树: 2. 哈弗曼树的实现 树节点的定义: class BinTNode: def __init__(self, data, left, rig…
一.B树 B树是一种多叉平衡查找树,由于是多叉结构,对于元素数量非常多的情况下,树的深度不会像二叉结构那么大,可以保证查询效率. 二.B+树 B+是是B树的一种变形, 1.特点: (1).所有叶子结点包含全部关键字信息,及指向含有这些关键字记录的指针,且叶子节点中关键字进行有序链接. (2).非叶子结点相当于是叶子节点的索引(稀疏索引),叶子结点相当于是存储(关键字)数据的数据层. 2.B+树比B树更适合操作系统的文件索引和数据库索引: (1)B+树的磁盘读写代价更低,B+树的内部结点没有指向关…
平衡二叉树(AVL树)定义如下:平衡二叉树或者是一棵空树,或者是具有以下性质的二叉排序树: (1)它的左子树和右子树的高度之差绝对值不超过1: (2)它的左子树和右子树都是平衡二叉树. AVL树避免了平衡二叉树初始序列有序建立的类似单链表情况,提高了查找效率. 1.AVL树的相关参量定义 #define _CRT_SECURE_NO_DEPRECATE #include<stdio.h> #include<stdlib.h> #include<windows.h> #d…
本文目录 一.为什么要创建红黑树这种数据结构 在上篇我们了解了AVL树,既然已经有了AVL这种平衡的二叉排序树,为什么还要有红黑树呢? AVL树通过定义我们知道要求树中每一个结点的左右子树高度差的绝对值不超过1,其是一颗严格的平衡树,这样构建出来的平衡二叉排序树具有很好的查找性能,但是为了保持其每个结点平衡因子绝对值不超过1的特性在插入或者删除的时候需要的维护成本是很大的,插入或者删除需要大量的平衡度计算,比如上一篇在AVL的插入的时候就需要不断回溯其父节点调整平衡因子的值,数据量小没什么问题,…