题目链接 \(Description\) 给定\(n,k\),求 满足对于所有\(i\),\(|a_i-i|\neq k\)的排列的个数. \(2\leq n\leq 2000,\quad 1\leq k\leq n-1\). \(Solution\) 容斥.则\(Ans=\sum_{i=0}^n(-1)^ig(i)(n-i)!\),其中\(g(i)\)为至少有\(i\)个位置满足\(|a_i-i|=k\)的排列数. 考虑如何计算\(g(x)\).每个\(i\)向\(i+k\)和\(i-k\)连…
D - ~K Perm Counting 链接 题意: 求有多少排列对于每个位置i都满足$|ai−i|!=k$.n<=2000 分析: 容斥+dp. $answer = \sum\limits_{i = 0}^{n}(-1)^ig[i] \times (n - i)!$ $g[i]$表示至少存在I个位置满足$a[i] - i = k$个数. 考虑如何求出$g[]$. 如果建立两列点,一个表示数字,一个表示下标,左边第i个点与右边第i-k和i+k个点连边,那么这是一张二分图,g[i]就是求满足有刚…
[Agc005D] K Perm Counting Description 糟糕爷特别喜爱排列.他正在构造一个长度为N的排列.但是他特别讨厌正整数K.因此他认为一个排列很糟糕,当且仅当存在至少一个i(1≤i≤N),使得|ai-i|=K 他想知道,对于N!个排列,有多少个是不糟糕的?由于答案很大,他只想知道答案对924844033取模后的结果. Input 第一行两个正整数N和K(2≤N≤2000,1≤K≤N-1) Output 输出有多少个排列是不糟糕的(对924844033取模) Sample…
A Simple Chess 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5794 Description There is a n×m board, a chess want to go to the position (n,m) from the position (1,1). The chess is able to go to position (x2,y2) from the position (x1,y1), only and if…
[BZOJ3622]已经没有什么好害怕的了 Description Input Output Sample Input 4 2 5 35 15 45 40 20 10 30 Sample Output 4 HINT 输入的2*n个数字保证全不相同. 还有输入应该是第二行是糖果,第三行是药片 题解:好吧这题不是神题,而是套路题,容斥+DP的套路在很多题中都用到过,不过我虽然知道套路,却被这题的第一步卡住了. 我们将两个序列从小到大排序. 好吧这步看起来可能很水,正常人看到无序的序列都会先想到排序,…
思路 "恰k个"考虑求至少k.k+1--个容斥 题面说所有数字都不同,可以将所求转化为糖比药多的组数恰为\((n+k)/2\)的方案数 \(f[i][j]\)数组我觉得更好的理解方式是"前i个已经安排了j组糖大于药.别的先没管"的方案数 \(f[n][i]*(n-i)!\)即为把其它的安排了以后的方案数,但是这里面有重的 设\(g[i]\)为恰i个的方案数.\[g[i]=f[n][i]*(n-i)!-\sum_{j=i+1}^ng[j]*C_j^i\]要说为什么又去…
给一个n*n的矩阵,保证:(1)每行都是一个排列 (2)每行每个位置和上一行对应位置不同.求这个矩阵在所有合法矩阵中字典序排第几.考虑类似数位DP的做法,枚举第几行开始不卡限制,那么显然之前的行都和题给矩阵相同,之后都是错排.现在要求的就是,当前行在所有与上一行不交的排列中字典序排第几.同样考虑数位DP,从后往前枚举到当前位开始不卡限制.用两个树状数组分别维护:(1)这一位之后的数组成的集合 (2)这一位之后当前行和上一行均有的数的集合.那么分当前这位是否使用上一行这一位之后存在的数讨论,现在要…
正解:容斥+$dp$ 解题报告: 传送门$QwQ$ $umm$虽然题目蛮简练的了但还是有点难理解,,,我再抽象一点儿,就说有$n$个点,点$i$和点$j$之间有$a_{i,j}$条无向边可以连,问有多少种方案可以连成一张联通图 显然考虑容斥呗?设$f_i$表示状态为$i$的点连成联通图的合法方案,$g_i$表示状态为$i$的点随便连边的所有方案 显然$g_i$可以先预处理出来?就等于$\prod_{u,v\in i}a_{u,v}$.然后$f_i$就等于$g_i$减去不合法的数量.不合法数量显然…
题面 传送门 思路 首先可以明确的一点是,本题中出现不满足条件的所有的数,都是分组的 只有模$K$意义下相同的数之间才会出现不满足条件的情况,而且仅出现在相邻的情况 那么我们考虑把这个性质利用起来 我们单独把其中一组抽出来考虑:设这一组为$p,p+k,p+2k,p+3k.....$ 那么我们发现,这其中每两个相邻的数之间都是互相不能选的 但是要注意,我们本题中讨论的实际上更应该是值和位置的关系,所以此时就变成了这样的形式: 位置$p+ki$不能选数$p+k(i+1)$,位置$p+ki(i+1)$…
题目大意 定义一个序列的权值为:把所有相邻的相同的数合并为一个集合后,所有集合的大小的乘积. 特别的,第一个数和最后一个数是相邻的. 现在你有 \(n\) 种数,第 \(i\) 种有 \(c_i\) 个.求所有不同的序列的权值的和. \(n\leq 50,c_i\leq 100\) 题解 考虑第一个数和最后一个数不相邻时怎么做. 记 \(g_{i,j}\) 为出现了 \(i\) 次的数分成 \(j\) 个集合,所有集合大小的乘积的和. \[ g_{i,j}=\sum_{k=1}^ig_{i-k,…