机器学习中一个重要的话题便是模型的泛化能力,泛化能力强的模型才是好模型,对于训练好的模型,若在训练集表现差,不必说在测试集表现同样会很差,这可能是欠拟合导致:若模型在训练集表现非常好,却在测试集上差强人意,则这便是过拟合导致的,过拟合与欠拟合也可以用 Bias 与 Variance 的角度来解释,欠拟合会导致高 Bias ,过拟合会导致高 Variance ,所以模型需要在 Bias 与 Variance 之间做出一个权衡. 过拟合与欠拟合 使用简单的模型去拟合复杂数据时,会导致模型很难拟合数据