首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
机器学习决策树python代码
2024-10-29
机器学习_决策树Python代码详解
决策树优点:计算复杂度不高,输出结果易于理解,对中间值的缺失不敏感,可以处理不相关特征数据: 决策树缺点:可能会产生过度匹配问题. 决策树的一般步骤: (1)代码中def 1,计算给定数据集的香农熵: 其中n为类别数,D为数据集,每行为一个样本,pk 表示当前样本集合D中第k类样本所占的比例,Ent(D)越小,D的纯度越高,即表示D中样本大部分属于同一类:反之,D的纯度越低,即数据集D中的类别数比较多. (2)代码中def 2,选择最好的数据集划分方式,即选择信息增益最大的属性: 其中 这里V
NBC朴素贝叶斯分类器 ————机器学习实战 python代码
这里的p(y=1|x)计算基于朴素贝叶斯模型(周志华老师机器学习书上说的p(xi|y=1)=|Dc,xi|/|Dc|) 也可以基于文本分类的事件模型 见http://blog.csdn.net/app_12062011/article/details/50540429有详细介绍 代码是机器学习实战所呈现的那种方式...... # -*- coding: utf-8 -*- """ Created on Mon Aug 07 23:40:13 2017 @author: mdz
决策树原理实例(python代码实现)
决策数(Decision Tree)在机器学习中也是比较常见的一种算法,属于监督学习中的一种.看字面意思应该也比较容易理解,相比其他算法比如支持向量机(SVM)或神经网络,似乎决策树感觉“亲切”许多. 优点:计算复杂度不高,输出结果易于理解,对中间值的缺失值不敏感,可以处理不相关特征数据. 缺点:可能会产生过度匹配的问题. 使用数据类型:数值型和标称型. 简单介绍完毕,让我们来通过一个例子让决策树“原形毕露”. 一天,老师问了个问题,只根据头发和声音怎么判断一位同学的性别. 为了解决这个问题,同
机器学习完整过程案例分布解析,python代码解析
所谓学习问题,是指观察由n个样本组成的集合,并依据这些数据来预測未知数据的性质. 学习任务(一个二分类问题): 区分一个普通的互联网检索Query是否具有某个垂直领域的意图.如果如今有一个O2O领域的垂直搜索引擎,专门为用户提供团购.优惠券的检索:同一时候存在一个通用的搜索引擎,比方百度,通用搜索引擎希望可以识别出一个Query是否具有O2O检索意图,如果有则调用O2O垂直搜索引擎,获取结果作为通用搜索引擎的结果补充. 我们的目的是学习出一个分类器(classifier),分类器能够理解为一个函
决策树ID3原理及R语言python代码实现(西瓜书)
决策树ID3原理及R语言python代码实现(西瓜书) 摘要: 决策树是机器学习中一种非常常见的分类与回归方法,可以认为是if-else结构的规则.分类决策树是由节点和有向边组成的树形结构,节点表示特征或者属性, 而边表示的是属性值,边指向的叶节点为对应的分类.在对样本的分类过程中,由顶向下,根据特征或属性值选择分支,递归遍历直到叶节点,将实例分到叶节点对应的类别中. 决策树的学习过程就是构造出一个能正取分类(或者误差最小)训练数据集的且有较好泛化能力的树,核心是如何选择特征或属性作为节点, 通
机器学习/逻辑回归(logistic regression)/--附python代码
个人分类: 机器学习 本文为吴恩达<机器学习>课程的读书笔记,并用python实现. 前一篇讲了线性回归,这一篇讲逻辑回归,有了上一篇的基础,这一篇的内容会显得比较简单. 逻辑回归(logistic regression)虽然叫回归,但他做的事实际上是分类.这里我们讨论二元分类,即只分两类,y属于{0,1}. 选择如下的假设函数: 这里写图片描述 其中: 这里写图片描述 上式称为逻辑函数或S型函数,图像如下图: 这里写图片描述 可以看到,当z趋向正无穷,g(z)趋向1,当z趋向负无穷g(z)趋
XGBoost参数调优完全指南(附Python代码)
XGBoost参数调优完全指南(附Python代码):http://www.2cto.com/kf/201607/528771.html https://www.zhihu.com/question/41354392 [以下转自知乎] https://www.zhihu.com/question/45487317 为什么xgboost/gbdt在调参时为什么树的深度很少就能达到很高的精度? XGBoost除去正则和并行的优化,我觉得和传统GBDT最核心的区别是:1. 传统GBDT的每颗树学习的是
随机森林入门攻略(内含R、Python代码)
随机森林入门攻略(内含R.Python代码) 简介 近年来,随机森林模型在界内的关注度与受欢迎程度有着显著的提升,这多半归功于它可以快速地被应用到几乎任何的数据科学问题中去,从而使人们能够高效快捷地获得第一组基准测试结果.在各种各样的问题中,随机森林一次又一次地展示出令人难以置信的强大,而与此同时它又是如此的方便实用. 需要大家注意的是,在上文中特别提到的是第一组测试结果,而非所有的结果,这是因为随机森林方法固然也有自己的局限性.在这篇文章中,我们将向你介绍运用随机森林构建预测模型时最令人感兴趣
一个 11 行 Python 代码实现的神经网络
一个 11 行 Python 代码实现的神经网络 2015/12/02 · 实践项目 · 15 评论· 神经网络 分享到:18 本文由 伯乐在线 - 耶鲁怕冷 翻译,Namco 校稿.未经许可,禁止转载!英文出处:iamtrask.欢迎加入翻译组. 概要:直接上代码是最有效的学习方式.这篇教程通过由一段简短的 python 代码实现的非常简单的实例来讲解 BP 反向传播算法. 代码如下: X = np.array([ [0,0,1],[0,1,1],[1,0,1],[1,1,1] ]) y
lightgbm原理以及Python代码
原论文: http://papers.nips.cc/paper/6907-lightgbm-a-highly-efficient-gradient-boosting-decision-tree.pdf lightgbm原理: gbdt困点: gbdt是受欢迎的机器学习算法,当特征维度很高或数据量很大时,有效性和可拓展性没法满足.lightgbm提出GOSS(Gradient-based One-Side Sampling)和EFB(Exclusive Feature Bundling)进行改进
推荐系统之矩阵分解及其Python代码实现
有如下R(5,4)的打分矩阵:(“-”表示用户没有打分) 其中打分矩阵R(n,m)是n行和m列,n表示user个数,m行表示item个数 那么,如何根据目前的矩阵R(5,4)如何对未打分的商品进行评分的预测(如何得到分值为0的用户的打分值)? ——矩阵分解的思想可以解决这个问题,其实这种思想可以看作是有监督的机器学习问题(回归问题). 矩阵R可以近似表示为P与Q的乘积:R(n,m)≍ P(n,K)*Q(K,m) 矩阵分解的过程中,将原始的评分矩阵分解成两个矩阵和的乘积: 矩阵P(n,K)表示n
8个数据清洗Python代码,复制可用,最长11行 | 资源
最近,大数据工程师Kin Lim Lee在Medium上发表了一篇文章,介绍了8个用于数据清洗的Python代码. 数据清洗,是进行数据分析和使用数据训练模型的必经之路,也是最耗费数据科学家/程序员精力的地方. 这些用于数据清洗的代码有两个优点:一是由函数编写而成,不用改参数就可以直接使用.二是非常简单,加上注释最长的也不过11行. 在介绍每一段代码时,Lee都给出了用途,也在代码中也给出注释. 大家可以把这篇文章收藏起来,当做工具箱使用. 涵盖8大场景的数据清洗代码 这些数据清洗代码,一共涵盖
Python代码样例列表
扫描左上角二维码,关注公众账号 数字货币量化投资,回复“1279”,获取以下600个Python经典例子源码 ├─algorithm│ Python用户推荐系统曼哈顿算法实现.py│ NFA引擎,Python正则测试工具应用示例.py│ Python datetime计时程序的实现方法.py│ python du熊学斐波那契实现.py│ python lambda实现求素数的简短代码.py│ Python localtime()方法计
一种部署 Python 代码的新方法
在Nylas,我们喜欢使用Python进行开发.它的语法简单并富有表现力,拥有大量可用的开源模块和框架,而且这个社区既受欢迎又有多样性.我们的后台是纯用 Python 写的,团队也经常在 PyCon 和 meetups 上演讲.你可以认为我们是 Python 的超级粉. 然而,Python 的一个大缺陷是没有一个明确的工具来部署 Python 服务端应用.工作的情况就像是“执行 git 的 pull 命令后剩下的就只有祈祷了”,但这并不是一个好的方式,尤其当用户依赖于我们的应用.当你的应用引用了
[置顶] 如何用PYTHON代码写出音乐
如何用PYTHON代码写出音乐 什么是MIDI 博主本人虽然五音不全,而且唱歌还很难听,但是还是非常喜欢听歌的.我一直在做这样的尝试,就是通过人工智能算法实现机器自动的作词和编曲(在这里预告下,通过深度学习写歌词已经实现了,之后会分享给大家),本文我们主要聊下如何写曲. 说到用代码写曲子,有一个东西大家一定要了解就是MIDI.MIDI是一种乐器数字接口,是编曲界最广泛的音乐标准格式.MIDI并不是真正意义上的音乐文件,大家可以把它理解成乐谱,需要有环境编译MIDI文件,才可以生成音乐.这个关系有
21行python代码实现拼写检查器
引入 大家在使用谷歌或者百度搜索时,输入搜索内容时,谷歌总是能提供很好的拼写检查,比方你输入 speling,谷歌会立即返回 spelling. 前几天,看到http://norvig.com/spell-correct.html这篇文章,于是翻译过来.再加上自己的理解,有了以下的博文. 以下是用21行python代码实现的一个简易可是具备完整功能的拼写检查器. 代码 import re, collections def words(text): return re.findall('[a-z]
朴素贝叶斯python代码实现(西瓜书)
朴素贝叶斯python代码实现(西瓜书) 摘要: 朴素贝叶斯也是机器学习中一种非常常见的分类方法,对于二分类问题,并且数据集特征为离散型属性的时候, 使用起来非常的方便.原理简单,训练效率高,拟合效果好. 朴素贝叶斯 贝叶斯公式: 朴素贝叶斯之所以称这为朴素,是因为假设了各个特征是相互独立的,因此假定下公式成立: 则朴素贝叶斯算法的计算公式如下: 在实际计算中,上面的公式会做如下略微改动: 由于某些特征属性的值P(Xi|Ci)可能很小,多个特征的p值连乘后可能被约等于0.可以公式两边取log然后
对数损失函数logloss详解和python代码
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频)https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share python代码 sklearn.metrics.log_loss(y_true, y_pred, eps=1e-15, normalize=True, s
决策树python建模中的坑 :ValueError: Expected 2D array, got 1D array instead:
决策树python建模中的坑 代码 #coding=utf-8 from sklearn.feature_extraction import DictVectorizerimport csvfrom sklearn import treefrom sklearn import preprocessingfrom sklearn.externals.six import StringIO allElectronicsData = open(r"D:\workspace\python\files\A
一元回归1_基础(python代码实现)
python机器学习-乳腺癌细胞挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003&utm_campaign=commission&utm_source=cp-400000000398149&utm_medium=share 机器学习,项目统计联系QQ:231469242 目录 1.基本概念 2.SSE/SSR/SST可视化 3.简单回归分为两类 4.一元回归公式 5.估计的
热门专题
原生js实现下拉框带搜索功能
suse11 sp3修改主机名
ionic代领快递项目
模块disk启动失败 物理磁盘已被使用
layer.msg 弹窗后跳转
Html.RenderPartial 示例
windows RabbitMQ配置文件在哪里
TeamViewer VPN如何建立
opencvsharp 照相
RabbitMQ客户端断线重连
Math.max 和 Collections.max
谷歌浏览器queryString传参加号会被显示成空格前端
js 小数点后保留n位小数正则
layui下拉框值被覆盖
unity sock环境搭建
plsql无监听程序12541
php amqplib文档
gitlab 默认性能设置
element vue select不显示下拉框
WinExec函数 参数