首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
电脑重启显存没有释放
2024-11-05
解决GPU显存未释放问题
前言 今早我想用多块GPU测试模型,于是就用了PyTorch里的torch.nn.parallel.DistributedDataParallel来支持用多块GPU的同时使用(下面简称其为Dist). 程序运行时,由于程序中其他部分的代码(与Dist无关的代码)出现了错误,导致程序退出.这次使用Dist时没有考虑和处理这种程序崩溃的情况,因此在程序退出前没有用Dist关闭生成的所有进程,最终导致本次进程运行后GPU显存未释放(经观察,发现是由于没有用Dist关闭所有进程,导致程序运行后还有一部分
ubuntu服务器常见使用技巧及-kill掉后GPU显存不释放进程-
如何解决python进程被kill掉后GPU显存不释放的问题 1 重新开一个shell,然后输入: ps aux|grep user_name|grep python.所有该用户下的python程序就会显示出来(很多在用watch命令都不会显示的进程在这里可以看到): 2 然后再一个个用kill命令清理 两台Linux系统之间传输文件的几种方法 连接服务器shell窗口关闭导致程序中断,让程序在linux后台运行nohup - CUDA_VISIBLE_DEVICES=1 nohup pytho
解决矩池云GPU显存未释放问题
很多用户反馈说终止程序之后,显存依然被占用,这里我们提供了两种解决方案,帮助用户解决这个问题. nvidia-smi查看 我们可以先用如下命令 nvidia-smi 查看一下当前GPU进程情况. _ GPU:GPU 编号: Name:GPU 型号: Persistence-M:持续模式的状态.持续模式虽然耗能大,但是在新的GPU应用启动时,花费的时间更少,这里显示的是off的状态: Fan:风扇转速,从0到100%之间变动: Temp:温度,单位是摄氏度: Perf:性能状态,从P0到P12,P
Ubuntu-Tensorflow 程序结束掉GPU显存没有释放的问题
笔者在ubuntu上跑Tensorflow的程序的时候,中途使用了Win+C键结束了程序的进行,但是GPU的显存却显示没有释放,一直处于被占用状态. 使用命令 nvidia-smi 显示如下 两个GPU程序都在执行中,实际上GPU:0已经被笔者停止了,但是GPU没有释放,进程还在继续,所以只有采用暴力手段了,将进程手动关闭掉,进程编号如图中红线部分,由于笔者在两个GPU跑的程序一样,很难从程序名称上找到自己,却可以从GPU:num上找到自己的PID. 关闭命令如下: sudo kill -9 P
Pytorch显存动态分配规律探索
下面通过实验来探索Pytorch分配显存的方式. 实验 显存到主存 我使用VSCode的jupyter来进行实验,首先只导入pytorch,代码如下: import torch 打开任务管理器查看主存与显存情况.情况分别如下: 在显存中创建1GB的张量,赋值给a,代码如下: a = torch.zeros([256,1024,1024],device= 'cpu') 查看主存与显存情况: 可以看到主存与显存都变大了,而且显存不止变大了1G,多出来的内存是pytorch运行所需的一些配置变量,我们
关于python中显存回收的问题
技术背景 笔者在执行一个Jax的任务中,又发现了一个奇怪的问题,就是明明只分配了很小的矩阵空间,但是在多次的任务执行之后,显存突然就爆了.而且此时已经按照Jax的官方说明配置了XLA_PYTHON_CLIENT_PREALLOCATE这个参数为false,也就是不进行显存的预分配(默认会分配90%的显存空间以供使用).然后在网上找到了一些类似的问题,比如参考链接中的1.2.3.4,都是在一些操作后发现未释放显存,这里提供一个实例问题和处理的思路,如果有更好的方案欢迎大家在评论区留言. 问题复现
(原)tensorflow中函数执行完毕,显存不自动释放
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/7608916.html 参考网址: https://stackoverflow.com/questions/39758094/clearing-tensorflow-gpu-memory-after-model-execution https://github.com/tensorflow/tensorflow/issues/1727#issuecomment-285815312s tensorflo
GPU 显存释放
我们在使用tensorflow 的时候, 有时候会在控制台终止掉正在运行的程序,但是有时候程序已经结束了,nvidia-smi也看到没有程序了,但是GPU的内存并没有释放,那么怎么解决该问题呢? 首先执行下面的命令: fuser -v /dev/nvidia* #查找占用GPU资源的PID 因为我们只有一块显卡,所以显示如下图所示: 可以看到我们的nvidia0上还有一个python 2.7的PID 然后我们执行: kill -9 pid 然后再执行nvidia-smi就可以看到内存已经被释放
Nvidia显卡怎样查看显存大小及硬件相关信息
在电脑上安装Nvidia显卡驱动,平时也会通过Nvidia控制面板来查看显示显存位宽及宽带.显示显存容量和显示显存芯片信息等等,那么该如何查看Nvidia显存大小以及Nvidia硬件相关信息呢? 1.安装上独立显卡驱动之后,在桌面空白空鼠标右键点击,nvidia控制面板,如图: 2.左下角系统属性即可查看机器的独立显卡显存,如图: 3.之后即可看到显卡显存位宽等情况. 如果用户想要查看到Nvidia显卡显存相关硬件信息的话,可以按照教程的简单步骤进行查看.
(原)tensorflow中使用指定的GPU及GPU显存
转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflow.com/questions/36668467/change-default-gpu-in-tensorflow http://stackoverflow.com/questions/37893755/tensorflow-set-cuda-visible-devices-within-jupyter 1 终端执行程序时设置使
显卡、显卡驱动、显存、GPU、CUDA、cuDNN
显卡 Video card,Graphics card,又叫显示接口卡,是一个硬件概念(相似的还有网卡),执行计算机到显示设备的数模信号转换任务,安装在计算机的主板上,将计算机的数字信号转换成模拟信号让显示器显示出来. 显卡是计算机的标配之一,计算机要显示图像就必须安装显卡.普通计算机的显卡一般是集成在主板上的. 显卡驱动 显卡驱动是显卡跟计算机连接的桥梁,可以让计算机识别到GPU硬件,是必须正确安装的,不同厂商.不同型号的GPU对应不同的显卡驱动.非开发人员不用安装CUDA或cuDNN,但
【原创】Linux环境下的图形系统和AMD R600显卡编程(4)——AMD显卡显存管理机制
显卡使用的内存分为两部分,一部分是显卡自带的显存称为VRAM内存,另外一部分是系统主存称为GTT内存(graphics translation table和后面的GART含义相同,都是指显卡的页表,GTT 内存可以就理解为需要建立GPU页表的显存).在嵌入式系统或者集成显卡上,显卡通常是不自带显存的,而是完全使用系统内存.通常显卡上的显存访存速度数倍于系统内存,因而许多数据如果是放在显卡自带显存上,其速度将明显高于使用系统内存的情况(比如纹理,OpenGL中分普通纹理和常驻纹理). 某些内容是必
CUDA 显存操作:CUDA支持的C++11
CUDA9的编译器和语言改进 使用CUDA 9,nvcc编译器增加了对C ++ 14的支持,其中包括新功能 通用的lambda表达式,其中使用auto关键字代替参数类型; auto lambda = [](auto a,auto b){return a * b;}; 功能的返回类型扣除(使用auto关键字作为返回类型,如上例所示) 对constexpr函数可以包含的更少的限制,包括变量声明,if,switch和循环. CUDA 9中的NVCC也更快,与CUDA 8相比,编译时间平均减少了20%,
AI换脸必备知识:如何查看显卡型号以及显存大小!
使用Deepfakes(AI换脸) 软件,拼的就是配置,耗的就是时间,考验的是耐心. 配置好了,时间就少了. 所以玩这种软件,硬核需求就是:配置,配置,配置. 我的电脑能跑这个软件么?也是很多新手的必问题目. 下面就介绍一下window系统查看显卡和显存的几种方法.因为的系统为win10, 我就主要win下面的操作.最后说一下win7. 方法1:设备管理 首先,点击任务栏最左边的window图标或者按一下Ctrl和Alt中间的Win图标. 然后,搜“设备管理器” 然后,双击打开,找到显卡适配器
tensorflow中使用指定的GPU及GPU显存
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 本文目录 1 终端执行程序时设置使用的GPU 2 python代码中设置使用的GPU 3 设置tensorflow使用的显存大小 3.1 定量设置显存 3.2 按需设置显存 ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 转载请注明出处: http://www.cnblogs.com/darkknightzh/p/6591923.html 参考网址: http://stackoverflo
TensorFlow中的显存管理器——BFC Allocator
背景 作者:DeepLearningStack,阿里巴巴算法工程师,开源TensorFlow Contributor] 使用GPU训练时,一次训练任务无论是模型参数还是中间结果都需要占用大量显存.为了避免每次训练重新开辟显存带来计算之外的开销,一般框架的做法是在真正的训练任务开始前,将每个节点的输入和输出,以及模型参数的shape计算出来并全局开辟一次,例如Caffe就是这种做法.随着深度学习模型的发展和迭代,不仅模型训练的数据shape可能发生变化,就连模型本身在训练过程中也可能发生变化,那么
分页型Memory LCD显存管理与emWin移植
上一篇随笔整理了一下逐行扫描型Memory LCD的显存管理与emWin移植,这篇就整理一下分页型Memory LCD显存管理与emWin移植. //此处以SSD1306作为实例 //OLED的显存//存放格式如下.//[0]0 1 2 3 ... 127 //[1]0 1 2 3 ... 127 //[2]0 1 2 3 ... 127 //[3]0 1 2 3 ... 127 //[4]0 1 2 3 ... 127 //[5]0 1 2 3 ... 127
逐行扫描型Memory LCD显存管理与emWin移植
因为Memory LCD 的特性,不能设置像素坐标,只能用缓存整体刷新. 所以对于Memory LCD来说,emWin移植仅与打点函数有关,这里用Sharp Memory LCD(ls013b7dh03)作为实例. //LCD的显存,逐行扫描//存放格式如下.//[0]0 1 2 3 ... 16 //[1]0 1 2 3 ... 16 //[2]0 1 2 3 ... 16 //[3]0 1 2 3 ... 16 //[4]0 1 2 3 ... 16 //[5]
Cpu Gpu 内存 显存 数据流
[精]从CPU架构和技术的演变看GPU未来发展 http://www.pcpop.com/doc/0/521/521832_all.shtml 显存与纹理内存详解 http://blog.csdn.net/pizi0475/article/details/8739557 GPU 与CPU的作用协调,工作流程.GPU整合到CPU得好处 http://blog.csdn.net/maopig/article/details/6803141 双剑合璧:CPU+GPU异构计算完全解析 http://bj
OpenGL8-直接分配显存-极速绘制(2)
视频教程请关注 http://edu.csdn.net/lecturer/lecturer_detail?lecturer_id=440/*** OpenGL8-直接分配显存-极速绘制(Opengl1.5版本才有)例子中展示了如何直接 分配显存,使用了glBindBuffer(GL_ARRAY_BUFFER_ARB, _vertexBufer)这个例 子中同样适用该函数分配显卡缓冲区,只是参数有所变化,传递的参数如下所示 glBindBuffer(GL_ELEMENT_ARRAY_BUFFER_
热门专题
yml properties 转换
@PreConstruct怎么使用
怎么启动Mosquitto
archlinux卸载wine
python lambda返回多个值
genesis无界面
git checkout 以前的版本
jq将svg保存到本地
apache ip限制
raid10怎么创建
未能进入中断模式 不属于正在调试的项目
vlc播放flv直播流
wpf 代码创建故事板
不死马 传到所有目录
js 判断字符串是xml还是json
oracle批量时违反唯一约束
不同数据库 数据抽取
pyqt5 鼠标右键菜单
edgeline编辑器下载
springboot druid连接池配置详解