首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
腐蚀膨胀MATLAB
2024-09-08
膨胀、腐蚀、开、闭(matlab实现)
膨胀.腐蚀.开.闭运算是数学形态学最基本的变换. 本文主要针对二值图像的形态学 膨胀:把二值图像各1像素连接成分的边界扩大一层(填充边缘或0像素内部的孔): B=[0 1 0 1 1 1 0 1 0]; A2=imdilate(A1,B);%图像A1被结构元素B膨胀 腐蚀:把二值图像各1像素连接成分的边界点去掉从而缩小一层(可提取骨干信息,去掉毛刺,去掉孤立的0像素): %strel函数的功能是运用各种形状和大小构造结构元素 se1=strel('disk',5);%这里是创
【zz】matlab 腐蚀膨胀算法
1.图像膨胀的Matlab实现: 可以使用imdilate函数进行图像膨胀,imdilate函数需要两个基本输入参数,即待处理的输入图像和结构元素对象.结构元素对象可以是strel函数返回的对象,也可以是一个自己定义的表示结构元素邻域的二进制矩阵.此外,imdilate还可以接受两个可选参数:PADOPT(padopt) ——影响输出图片的大小.PACKOPT(packopt).——说明输入图像是否为打包的二值图像(二进制图像).举个实例如下: 步骤1,首先创建一个包含矩形对象的二值图像矩阵.
基于MATLAB的腐蚀膨胀算法实现
本篇文章要分享的是基于MATLAB的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,腐蚀在二值图像的基础上做“收缩”或“细化”操作,膨胀在二值图像的基础上做“加长”或“变粗”的操作. 什么是二值图像呢?把一幅图片看做成一个二维的数组,那么二值图像是一个只有0和1的逻辑数组,我们前面Sobel边缘检测后的图像输出边缘效果,设置个阈值,大于阈值输出为1,小于阈值输出为0,最后输出就是一幅二维图像了. 腐蚀 腐蚀是一种消除边界点,使边界向内部收缩的过程.可以用来消除小且无意义的物体.用3X3的结构元
基于FPGA的腐蚀膨胀算法实现
本篇文章我要写的是基于的腐蚀膨胀算法实现,腐蚀膨胀是形态学图像处理的基础,,腐蚀在二值图像的基础上做"收缩"或"细化"操作,膨胀在二值图像的基础上做"加长"或"变粗"的操作.那么什么是二值图像呢?把一幅图片看做成一个二维的数组,那么二值图像是一个只有0和1的逻辑数组,我们前面Sobel边缘检测后的图像输出边缘效果,设置个阈值,大于阈值输出为1,小于阈值输出为0,最后输出就是一幅二维图像了. 上一篇我是直接用MATLAB处理后的
opencv中的图像形态学——腐蚀膨胀
腐蚀膨胀是图像形态学比较常见的处理,腐蚀一般可以用来消除噪点,分割出独立的图像元素等. 一般腐蚀操作对二值图进行处理,腐蚀操作如下图,中心位置的像素点是否与周围领域的像素点颜色一样(即是否是白色点,即值是否为255),若一致,则保留,不一致则该点变为黑色(值即为0) opencv中的腐蚀操作: CVAPI(void) cvErode( const CvArr* src, CvArr* dst, IplConvKernel* element CV_DEFAULT(NULL), ) ); 前两个参数
OpenCV 腐蚀膨胀操作
利用腐蚀膨胀操作实现对椭圆周围线条的消除,椭圆的大小不变 代码如下: #include "cv.h" #include "highgui.h" int main() { IplImage *img,*img_erode,*img_dilate; img = cvLoadImage("test.jpg"); img_erode = cvCreateImage(cvGetSize(img),,); img_dilate = cvCreateImage
OpenCV计算机视觉学习(5)——形态学处理(腐蚀膨胀,开闭运算,礼帽黑帽,边缘检测)
如果需要处理的原图及代码,请移步小编的GitHub地址 传送门:请点击我 如果点击有误:https://github.com/LeBron-Jian/ComputerVisionPractice 形态学操作简单来说,就是改变物体的形状,下面学习一下,首先本文的目录如下: 1,定义结构元素 2,腐蚀和膨胀 3,开运算和闭运算 4,礼帽/顶帽,黑帽算法 5,梯度运算 6,形态学运算 检测边和角点(1,检测边缘 : 2,检测拐角) 1,定义结构元素 形态学操作的原理:在特殊领域运算形式--结构元素(S
学习 opencv---(9)形态学图像处理(一):膨胀和腐蚀
本篇文章中,我们一起探究了图像处理中,最基本的形态学运算--膨胀与腐蚀.浅墨在文章开头友情提醒,用人物照片做腐蚀和膨胀的素材图片得到的效果会比较惊悚,毁三观的,不建议尝试.......... 一.理论与概念讲解--从现象到本质 1.1 形态学概述 形态学(morphology)一词通常表示生物学的一个分支,该分支主要研究动植物的形态和结构,而我们图像处理中指的形态学,往往表示的是数学形态学,下面一起来了解数学形态学的概念. 数学形态学(Mathematical morphology)是一门建立在
Java基于opencv实现图像数字识别(五)—腐蚀、膨胀处理
腐蚀:去除图像表面像素,将图像逐步缩小,以达到消去点状图像的效果:作用就是将图像边缘的毛刺剔除掉 膨胀:将图像表面不断扩散以达到去除小孔的效果:作用就是将目标的边缘或者是内部的坑填掉 使用相同次数的腐蚀和膨胀,可以使目标表面更平滑:但也有场景限制,就是如果去噪不干净的话,会出现意想不到的结果,尽量别使用 大概的效果,适合降噪比较干净的图 // 图像腐蚀/膨胀处理 public void erodeImg() { Mat outImage = new Mat(); // size 越小,腐蚀的单位
【python-opencv】17-形态学操作-腐蚀与膨胀
形态学操作其实就是改变物体的形状,比如腐蚀就是"变瘦",膨胀就是"变胖",看下图就明白了: 形态学操作一般作用于二值化图(也可直接作用于原图),来连接相邻的元素或分离成独立的元素.腐蚀和膨胀是针对图片中的白色部分! 腐蚀 腐蚀的效果是把图片"变瘦",其原理是在原图的小区域内取局部最小值.因为是二值化图,只有0和255,所以小区域内有一个是0该像素点就为0: 这样原图中边缘地方就会变成0,达到了瘦身目的 OpenCV中用cv2.erode()函数进
OpenCV学习(10) 图像的腐蚀与膨胀(1)
建议大家看看网络视频教程:http://www.opencvchina.com/thread-886-1-1.html 腐蚀与膨胀都是针对灰度图的形态学操作,比如下面的一副16*16的灰度图. 它每个像素对应的值为(每个像素值范围都在0-255之间)为: 我们定义一个5*5的结构元素,该结构元素用5*5的矩阵表示,其中为1的单元,表示该单元在结构元素中有效,另外还定义一个锚点,坐标为(2,2),在单元格中用蓝色表示. 腐蚀/膨胀的操作就是用结构元素的锚点位置对齐图像的像素,然后
opencv 4 图像处理(2 形态学滤波:腐蚀与膨胀,开运算、闭运算、形态学梯度、顶帽、黑帽)
腐蚀与膨胀 膨胀(求局部最大值)(dilate函数) #include <opencv2/core/core.hpp> #include <opencv2/highgui/highgui.hpp> #include <opencv2/imgproc/imgproc.hpp> #include <iostream> //-----------------------------------[命名空间声明部分]--------------------------
基于MATLAB的人脸识别算法的研究
基于MATLAB的人脸识别算法的研究 作者:lee神 现如今机器视觉越来越盛行,从智能交通系统的车辆识别,车牌识别到交通标牌的识别:从智能手机的人脸识别的性别识别:如今无人驾驶汽车更是应用了大量的机器识别的是算法在里边. 今天我们将从MATLAB的图像识别说起,后边将陆续讲解车牌识别,交通标牌识别等,并努力将它移植到FPGA里边做到高速实时处理. MATLAB人脸识别的处理过程: % 读入图像 %低通滤波,去除噪声 %颜色空间的转换 %像素值概率的计算 %图像的腐蚀 %图像的膨胀 %根据填充率,
基于MATLAB的Sobel边缘检测算法实现
图像边缘就是图像灰度值突变的地方,也就是图像在该部分的像素值变化速度非常之快,就比如在坐标轴上一条曲线有刚开始的平滑突然来个大转弯,在变化出的导数非常大. Sobel算子主要用作边缘检测,它是一离散型差分算子,用来计算图像亮度函数灰度之近似值. 边缘是指其周围像素灰度急剧变化的那些像素的集合.边缘存在于目标.背景和区域之间,所以,边缘是图像分割所依赖的最重要的依据.由于边缘是位置的标志,对灰度的变化不敏感,因此,边缘也是图像匹配的重要的特征. Sobel边缘检测的核心在于像素矩阵的卷积,卷积对于
图像处理MATLAB源代码
图像反转 I=imread('nickyboom.jpg'); J=double(I); J=-J+(256-1); %图像反转线性变换 H=uint8(J); subplot(1,2,1),imshow(I); subplot(1,2,2),imshow(H); 直方图均衡化 MATLAB 程序实现例如以下: I=imread('nickyboom.jpg); I=rgb2gray(I); figure; subplot(2,2,1); imshow(I); s
matlab图像处理程序大集合
1.图像反转 MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H); 2.灰度线性变换MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,50
OpenCV 图象腐蚀形态学操作 全家桶
图象腐蚀与形态学操作 opencv 1. 通过调用库函数实现图像的腐蚀.膨胀: 2. 通过设置结构元素.元素大小.形态学操作类型实现对图象的形态学操作. 源码(VS2017+OpenCV 4.0) #include <iostream> #include <opencv2/opencv.hpp> #include <opencv2/core.hpp> #include <opencv2/highgui.hpp> #include <opencv2/im
(opencv10)膨胀和侵蚀(Dilation与Erosion)
(opencv10)膨胀和侵蚀(Dilation与Erosion) 图像形态学操作 图像形态学操作-基于形状的一系列图像处理操作的合集,主要是基于集合论基础上的形态学数学 形态学有四个基本操作:腐蚀,膨胀,开,闭 膨胀与腐蚀是图像处理中最常用的形态学操作手段 膨胀和腐蚀是对白色部分而言的,不是黑色部分.膨胀就是图像中的白色部分进行膨胀,"领域扩张",效果图拥有比原图更大的高亮区域.腐蚀就是原图中的高亮部分被腐蚀,"领域被蚕食",效果图拥有比原图更小的高亮区域 膨胀与
paper 55:图像分割代码汇总
matlab 图像分割算法源码 1.图像反转 MATLAB程序实现如下:I=imread('xian.bmp');J=double(I);J=-J+(256-1); %图像反转线性变换H=uint8(J);subplot(1,2,1),imshow(I);subplot(1,2,2),imshow(H); 2.灰度线性变换 MATLAB程序实现如下:I=imread('xian.bmp');subplot(2,2,1),imshow(I);title('原始图像');axis([50,250,5
opencv 61篇
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报 分类: OpenCV(60) 版权声明:本文为博主原创文章,未经博主允许不得转载. 决心开始研究OpenCV.闲言少叙,sourceforge网站最近的版本是2011年8月的OpenCV2.3.1,下载安装,我这里使用的开发环境是vs2008,网上搜了一下配置的教程,与之前的几个OpenCV版本的配置过程大体相同:(
基于opencv的车牌识别系统
前言 学习了很长一段时间了,需要沉淀下,而最好的办法就是做一个东西来应用学习的东西,同时也是一个学习的过程. 概述 OpenCV的全称是:Open Source Computer Vision Library.OpenCV是一个基于(开源)发行的跨平台计算机视觉库,可以运行在Linux.Windows和Mac OS操作系统上.它轻量级而且高效——由一系列 C 函数和少量 C++ 类构成,同时提供了Python.Ruby.MATLAB等语言的接口,实现了图像处理和计算机视觉方面的很多通用算
热门专题
mount xfs重启后失效
app 跳转 schema
strom和mongo
asp.net 表里0时不显示
update mode参数
request.getParameterNames() 为空
sheet.getLastRowNum()少一行
jenkins 运行jmeter
C# HttpClient 设置cookie
希腊字母和拉丁字母表及读音
list指定位置添加元素java
java post 调第三方接口传json数组
WPF 数据源容器范围外
thinkphp 超连接动态取下列参数值
rockpi官网 手册
android 检测u盘是否插入
zw暴力枚举模块地址
bochs 命令行启动 img
如何自定义小程序转发封面图
reactnative 升级