首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
语义网络图谱是什么意思
2024-08-28
[NLP] 语义网络与知识图谱入门(一)
语义网络与知识图谱入门(一) RDF/XML 本体:一种形式化的对于共享概念体系明确而又详细的说明.就是指一种抽象的模型,可以用来描述对象类型.属性以及关系类型所构成的世界. RDF/XML主要讲的就是如何用XML的方式来表示RDF的图. 椭圆表示节点,矩形表示文本,弧表示谓语. 节点描述 <rdf:Description rdf:about="A"></rdf:Description> 一个节点本身需要被rdf:Description来定义,通过rdf:abo
[NLP] 语义网络与知识图谱入门(二)
语义网络与知识图谱入门(二) OWL 本体声明 owl用owl:Ontology来声明一个本体.rdf:about属性为本体提供一个名称或引用.根据标准,当rdf:about属性的值为""时,本体的名称是owl: Ontology元素的基准URI. <owl:Ontology rdf:about=""> <rdfs:comment>An example OWL ontology</rdfs:comment> <owl:pri
知识图谱基础之RDF,RDFS与OWL
https://blog.csdn.net/u011801161/article/details/78833958 https://blog.csdn.net/baidu_15113429/article/details/82144731 RDF:单纯的三元组,没有本体概念,如果构建一个公司的知识图谱,公司的董事和中层以及普通员工都是员工,你在查找员工的时候,就需要把董事以及各个职位的人都查找出来. RDFS:会添加本体,例如员工下面有董事以及中层和普通员工,这样就能直接通过抽象的员工而不用访问
知识图谱基础之RDF,RDFS与OWL 2
https://zhuanlan.zhihu.com/p/32122644 看过之前两篇文章([1](为什么需要知识图谱?什么是知识图谱?——KG的前世今生), [2](语义网络,语义网,链接数据和知识图谱))的读者应该对RDF有了一个大致的认识和理解.本文将结合实例,对RDF和RDFS/OWL,这两种知识图谱基础技术作进一步的介绍.其实,RDF.RDFS/OWL是类语义网概念背后通用的基本技术,而知识图谱是其中最广为人知的概念. 一.知识图谱的基石:RDF RDF表现形式 RDF(Resour
Task1:知识图谱介绍(1天)
一.知识图谱简介 "知识图谱本质上是语义网络(Semantic Network)的知识库".但这有点抽象,所以换个角度,从实际应用的角度出发其实可以简单地把知识图谱理解成多关系图(Multi-relational Graph). 二.怎么构建知识图谱呢? 2.1 知识图谱的数据来源 第一种:业务本身的数据.这部分数据通常包含在公司内的数据库表并以结构化的方式存储,一般只需要简单预处理即可以作为后续AI系统的输入: 第二种:网络上公开.抓取的数据.这些数据通常是以网页的形式存在所以是非结
知识图谱和neo4j的基本操作
一.知识图谱的简介 1.知识图谱是什么 知识图谱本质上是语义网络(Semantic Network)的知识库 可以理解为一个关系图网络. 2.什么是图 图(Graph)是由节点(Vertex)和边(Edge)来构成,多关系图一般包含多种类型的节点和多种类型的边. 3.什么是Schema 限定待加入知识图谱数据的格式:相当于某个领域内的数据模型,包含了该领域内有意义的概念类型以及这些类型的属性 二.知识图谱的构建 1.数据来源 结构化数据和非结构化数据,前者可能是本地数据库中的信息,后者主要是在网
哈工大知识图谱(Knowledge Graph)课程概述
一.什么是知识图谱 知识(Knowledge)可以理解为 精炼的数据,知识图谱(Knowledge Graph)即是对知识的图形化表示,本质上是一种大规模语义网络 (semantic network) – 富含实体(entity). 概念(concepts) 及其之间的各种语义关系 (semantic relationships),比如 知识图谱和人工智能: 知识图谱的理想状态: 给所有IOT设备和机器人都挂一个背景知识库,因为对于人类来说,对一个事物的理解取决于这个人关于事物的相关背景知识,对
知识图谱-生物信息学-医学顶刊论文(Briefings in Bioinformatics-2021):生物信息学中的图表示学习:趋势、方法和应用
4.(2021.6.24)Briefings-生物信息学中的图表示学习:趋势.方法和应用 论文标题: Graph representation learning in bioinformatics: trends, methods and applications 论文期刊: Briefings in Bioinformatics 2021 论文地址: https://www.researchgate.net/profile/Haicheng-Yi/publication/354327323_G
Atitit learn by need 需要的时候学与预先学习知识图谱路线图
Atitit learn by need 需要的时候学与预先学习知识图谱路线图 1. 体系化是什么 架构 知识图谱路线图思维导图的重要性11.1. 体系就是架构21.2. 只见树木不见森林21.3. 知识图谱路线图的优点优点需要的21.4. 思维导图 大纲性 集成化22. 文字化>>表格化>>脚本化,可视化23. 如何体系化23.1. 分类,单根继承23.2. 一点带线,以线带面23.3. 纵向,横向抽象拓展23.4. 拓展和应用23.5. 以点带面,全方位网状 拓展33.6.
Atitit 图像处理知识点体系知识图谱 路线图attilax总结 v4 qcb.xlsx
Atitit 图像处理知识点体系知识图谱 路线图attilax总结 v4 qcb.xlsx 分类 图像处理知识点体系 v2 qb24.xlsx 分类 分类 理论知识 图像金字塔 常用底层操作 卷积扫描 滤镜 素描滤镜 理论知识 高斯金字塔,拉普拉斯金字塔 常用底层操作 扫描线扫描 滤镜 毛玻璃 理论知识 Harris角点 常用底层操作 像素扫描 滤镜 油画 理论知识 纹理 常用底层操作 滤镜 像素画 理论知识 Bezier曲线 常用底层操作 截取 滤镜 其他滤镜效果 理论知识 去除alpha通道
Atitit 补充说明 sql知识图谱与线路图attilax总结补充说明
Atitit 补充说明 sql知识图谱与线路图attilax总结补充说明 1. 常见编程语言的分类 :命令式语言.函数式语言.逻辑语言1 1.1. 按照编程语言的代际划分,又2gl,3gl,4gl,5gl ,sql属于4gl1 1.2. 按照领域范围可分为通用语言与dsl领域特定语言,sql语言属于dsl1 2. 如何判断一门编程语言完备不完备,为什么脚本语言往往不完备?1 2.1. Sql语言又多少内置函数?2 2.2. Sql语言中的变量与数据结构,很多是表和视图一类复合结构2 2.
【系统架构】IT职业技能图谱(点开大图查看)
本文地址 1 程序开发语言综述 2 iOS开发工程师必备技能 3 运维工程师必备技能 4 前端工程师必备技能 5 大数据工程师必备技能 6 云计算工程师必备技能 7 安全工程师必备技能 8 移动无线测试工程师必备技能 9 嵌入式开发必备技能 10 微服务架构技能图谱 11 Hadoop家族技能图谱 12 OpenResty技能图谱 13 Container容器技能图谱 原文地址 [系统架构]IT职业技能图谱(点开大图查看)
Atitit 图像处理知识点 知识体系 知识图谱v2
Atitit 图像处理知识点 知识体系 知识图谱v2 霍夫变换(Hough Transform) 霍夫变换是图像处理中从图像中识别几何形状的基本方法之一,应用很广泛,也有很多改进算法.主要用来从图像中分离出具有某种相同特征的几何形状(如,直线,圆等).最基本的霍夫变换是从黑白图像中检测直线(线段). Hough变换原理 霍夫变换的应用是很广泛的,比如我们要做一个支票识别的任务,假设支票上肯定有一个红颜色的方形印章,我们可以通过霍夫变换来对这个印章进行快速定位,在配合其它手段进行其它处理.霍夫变
Atitit 图像处理知识点 知识体系 知识图谱
Atitit 图像处理知识点 知识体系 知识图谱 图像处理知识点 图像处理知识点体系 v2 qb24.xlsx 基本知识图像金字塔op膨胀叠加混合变暗识别与检测分类肤色检测other验证码生成 基本知识卷积扫描op高斯模糊叠加混合颜色简单识别与检测分类ocr文字检测other动态按钮背景 基本知识扫描线扫描op灰度化叠加混合普通叠加识别与检测分类人脸检测other字体扣除 基本知识像素扫描op截取叠加混合识别与检测分类胸部检测other字体合成 基本知识去除alpha通道op相似度判断叠加混合
Atitit 研发体系建立 数据存储与数据知识点体系知识图谱attilax 总结
Atitit 研发体系建立 数据存储与数据知识点体系知识图谱attilax 总结 分类具体知识点原理规范具体实现(oracle,mysql,mssql是否可以自己实现说明 数据库理论数据库的类型 数据库理论,网状,层次, 数据库理论树形数据库注册表,hashtable 数据库理论,kv数据库.hashtable 数据库理论Oodb 数据库理论nosql db 数据库理论隔离级别 数据库理论 数据库理论Er模型 数据库理论Acid数据库完整性 数据库理论关系模型 数据库理论 sql 数据库理论
Atitit 知识图谱的数据来源
Atitit 知识图谱的数据来源 2. 知识图谱的数据来源1 a) 百科类数据2 b) 结构化数据3 c) 半结构化数据挖掘AVP (垂直站点爬虫)3 d) 通过搜索日志(query record log)进行实体和实体属性等挖掘4 2. 知识图谱的数据来源 为了提高搜索质量,特别是提供如对话搜索和复杂问答等新的搜索体验,我们不仅要求知识图谱包含大量高质量的常识性知识,还要能及时发现并添加新的知识.在这种背景下,知识图谱通过收集来自百科类站点和各种垂直站点的结构化数据来覆盖大部分常识性知
Atitit 知识图谱解决方案:提供完整知识体系架构的搜索与知识结果overview
Atitit 知识图谱解决方案:提供完整知识体系架构的搜索与知识结果overview 知识图谱的表示和在搜索中的展1 提升Google搜索效果3 1.找到最想要的信息.3 2.提供最全面的摘要.4 3.让搜索更有深度和广度.4 互联网正从仅包含网页和网页之间超链接的文档万维网(Document Web)转变成包含大量描述各种实体和实体之间丰富关系的数据万维网(Data Web).在这个背景下,Google.百度和搜狗等搜索引擎公司纷纷以此为基础构建知识图谱,分别为Knowledge Gr
Atitti 知识图谱构建方法attilax 总结
Atitti 知识图谱构建方法attilax 总结 1.1. 知识图谱schema构建(体系化)1 1.2. 纵向垂直拓展(向上抽象,向下属性拓展)2 1.3. 横向拓展2 1.4. 网拓展2 1.5. a) 推理2 1.6. c) 相关实体挖掘 2 2. other3 2.1. 面向站点的包装器(Site-specificWrapper)3 2.2. 5. 知识图谱的更新和维护3 a) 实体对齐 实体对齐(Object Alignment 各大搜索引擎公司普遍采用的方法是聚类.聚类的
fir.im Weekly - 人人都需要的 IT 技能图谱
AlphaGo 与李世石的人机世纪大战落下帷幕,不禁让人思考<失控> 中说道的 "机器正在生物化,而生物正在工程化 ".作为人类,在未来能否保全最后的智力骄傲成为一个疑问.而当下,正确敏捷地掌握生产力工具.拓展知识资源库,提高技能图谱,也许人人之必需. 闲话少说,本期 fir.im Weekly 精选了一些热转资源,希望对你有用. StuQ 技能图谱 StuQ 技能图谱是由 @StuQ官博发起的一个开源项目,志在汇集整理 IT 职业必备技术技能(云计算,大数据,运维,安全,
DBA的技能图谱
最近发现公布的技术岗位的技能图谱中没有DBA的,比较心塞,于是根据自己的工作经验写了一个,写的过程中发现,还的不断的完善,但是先放出来,欢迎大家提建议.
热门专题
vmware centos7没有分配swap
crntos 快速下载大文件
druid开启不了spring监控
html ul li提取数据库
mysql8.0设置密码无效
虚拟机kali和物理机怎样复制粘贴
while中false是什么意思
logstation 配置
finereport 单元格获取参数值
vue $confirm可以有3个选择吗
VS 字符大小写快捷键
devexpress gridcontrol行样式
银河麒麟 关闭防火墙
sqli-labs 24代码审计
maven model依赖打包失败
dos 定时关闭次程序
ui自动化安装selenium
tesseract 图标
iOS tab点击push
linux libssl3安装