首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
1236 序列求和 V3
2024-09-03
51nod1236 序列求和 V3
这题炒鸡简单,只要第一步想对了后面顺风顺水QWQ(然鹅我没想到) 前置芝士: 斐波那契数列通项公式 等比数列求和公式 二项式定理 这题要求的就是 \(\sum_{i=1}^n Fib(i)^k\) ,其中 Fib 就是斐波那契数列 如果说没有 k 的话怎么做?仍然不会.jpg 于是我们直接想带 k 的答案吧... 我们考虑 把斐波那契数列的通项公式带进去! 然后鬼都知道怎么做了,就是一堆化式子: \[\begin{aligned}ANS=& \sum_{i=1}^n Fib(i)^k\\=&
51nod_1236_序列求和 V3 _组合数学
51nod_1236_序列求和 V3 _组合数学 Fib(n)表示斐波那契数列的第n项,Fib(n) = Fib(n-1) + Fib(n-2).Fib(0) = 0, Fib(1) = 1. (1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, ...) F(n, k) = Fib(n)^k(Fib(n)的k次幂). S(n, k) = F(1, k) + F(2, k) + ...... F(n, k). 例如:S(4, 2) = 1
51nod1236 序列求和 V3 【数学】
题目链接 51nod1236 题解 用特征方程求得斐波那契通项: \[f(n) = \frac{(\frac{1 + \sqrt{5}}{2})^{n} - (\frac{1 - \sqrt{5}}{2})^{n}}{\sqrt{5}}\] 那么 \[ \begin{aligned} ans &= \sum\limits_{i = 1}^{n} (\frac{(\frac{1 + \sqrt{5}}{2})^{i} - (\frac{1 - \sqrt{5}}{2})^{i}}{\sqrt{5}
[51nod1236] 序列求和 V3(斐波那契数列)
题面 传送门 题解 把求和的柿子用斐波那契数列的通项公式展开 \[ \begin{aligned} Ans &=\sum\limits_{i = 1}^{n} \left(\frac{(\frac{1 + \sqrt{5}}{2})^{i} - (\frac{1 - \sqrt{5}}{2})^{i}}{\sqrt{5}}\right)^{k} \\ &= \left(\frac{1}{\sqrt{5}}\right)^{k}\sum\limits_{i = 1}^{n} \sum\lim
HDU 5358 First One 求和(序列求和,优化)
题意:给定一个含n个元素的序列,求下式子的结果.S(i,j)表示为seq[i...j]之和.注:对于log20可视为1.数据量n<=105. 思路:即使能够在O(1)的时间内求得任意S,也是需要O(n*n)来求和的. 对于这种题,一般就是研究式子,看有什么办法可以减少复杂度. 看到式子中的向下取整符号了吗?很多数的取整结果是相同的,即使给个2147483647取整也只是30多而已(噗,忘了多少). 而对于这个式子,S最大也不会超过longlong,确切计算,小于234.那么取log之后的范围这么
51NOD 1258 序列求和 V4 [任意模数fft 多项式求逆元 伯努利数]
1258 序列求和 V4 题意:求\(S_m(n) = \sum_{i=1}^n i^m \mod 10^9+7\),多组数据,\(T \le 500, n \le 10^{18}, k \le 50000\) 等幂求和 多项式求逆元\(O(mlogm)\)预处理伯努利数,然后可以\(O(m)\)回答 因为是任意模数,所以要用拆系数fft 拆系数fft+多项式求逆元,写的爽死了 具体内容可能会写学习笔记 注意: 多项式求逆元里拆系数,不能只更新 .x= ,这样的话y还保留以前的值就错了 因为使用
51nod 1258 序列求和 V4
http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1258 1258 序列求和 V4 基准时间限制:8 秒 空间限制:131072 KB 分值: 1280 难度:9级算法题 收藏 关注 T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结
【51Nod1258】序列求和V4(FFT)
[51Nod1258]序列求和V4(FFT) 题面 51Nod 多组数据,求: \[Ans=\sum_{i=1}^ni^k,n\le 10^{18},k\le50000\] 题解 预处理伯努利数,时间复杂度\(O(nlogn)\) 然后利用伯努利数求和即可. \[\sum_{i=1}^n i^k=\frac{1}{k+1}\sum_{i=0}^kB_iC_{k+1}^i(n+1)^{k+1-i}\] 预处理需要多项式求逆,因为模数不太好,所以需要\(MTT\) #include<iostream
HDU 2254 奥运(矩阵高速幂+二分等比序列求和)
HDU 2254 奥运(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 2254 奥运 题意: 中问题不解释. 分析: 依据floyd的算法,矩阵的k次方表示这个矩阵走了k步. 所以k天后就算矩阵的k次方. 这样就变成:初始矩阵的^[t1,t2]这个区间内的v[v1][v2]的和. 所以就是二分等比序列求和上场的时候了. 跟HDU 1588 Gauss Fibonacci的算法一样. 代码: /* * Author: illuz <iilluzen[at]gmail.com>
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和)
HDU 1588 Gauss Fibonacci(矩阵高速幂+二分等比序列求和) ACM 题目地址:HDU 1588 Gauss Fibonacci 题意: g(i)=k*i+b;i为变量. 给出k,b,n,M,问( f(g(0)) + f(g(1)) + ... + f(g(n)) ) % M的值. 分析: 把斐波那契的矩阵带进去,会发现这个是个等比序列. 推倒: S(g(i)) = F(b) + F(b+k) + F(b+2k) + .... + F(b+nk) // 设 A = {1
lqb 入门训练 序列求和 (PS:用长整数做数据的输入输出)
入门训练 序列求和 时间限制:1.0s 内存限制:256.0MB 问题描述 求1+2+3+...+n的值. 输入格式 输入包括一个整数n. 输出格式 输出一行,包括一个整数,表示1+2+3+...+n的值. 样例输入 4 样例输出 10 样例输入 100 说明:有一些试题会给出多组样例输入输出以帮助你更好的做题. 一般在提交之前所有这些样例都需要测试通过才行,但这不代表这几组样例数据都正确了你的程序就是完全正确的,潜在的错误可能仍然导致你的得分较低. 样例输出 5050 数据规模与约
51nod 1228 序列求和(伯努利数)
1228 序列求和 题目来源: HackerRank 基准时间限制:3 秒 空间限制:131072 KB 分值: 160 难度:6级算法题 收藏 关注 T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结果很大,输出S(n) Mod 1000000007的结果即可. Input 第1行:一个数T,表示后面用作输入测
Python 序列求和
#基于Python2.7 多数OJ题库的第一题便是A+B,A+B+C此类求和问题,之前初学Python时是这么做的: while True: try: a,b,c=raw_input().split() print int(a)+int(b)+int(c) except: break 还是C++的风格,今天刚在Vijos的实例程序上看到如下代码: #import sys #sys.stdin=open('in.txt','r') #sys.stdout=open('out.txt','w') w
51nod1258 序列求和V4
T(n) = n^k,S(n) = T(1) + T(2) + ...... T(n).给出n和k,求S(n). 例如k = 2,n = 5,S(n) = 1^2 + 2^2 + 3^2 + 4^2 + 5^2 = 55. 由于结果很大,输出S(n) Mod 1000000007的结果即可. Input 第1行:一个数T,表示后面用作输入测试的数的数量.(1 <= T <= 500) 第2 - T + 1行:每行2个数,N, K中间用空格分割.(1 <= N <= 10^18,
51nod1229 序列求和 V2 【数学】
题目链接 B51nod1229 题解 我们要求 \[\sum\limits_{i = 1}^{n}i^{k}r^{i}\] 如果\(r = 1\),就是自然数幂求和,上伯努利数即可\(O(k^2)\) 否则,我们需要将式子进行变形 要与\(n\)无关 设 \[F(k) = \sum\limits_{i = 1}^{n} i^{k}r^{i}\] 自然数幂应该是不用去动了,两边乘个\(r\) \[rF(k) = \sum\limits_{i = 2}^{n + 1}r^{i}(i - 1)^{k}
Codeup 25609 Problem I 习题5-10 分数序列求和
题目描述 有如下分数序列 2/1,3/2,5/3,8/5,13/8,21/13 - 求出次数列的前20项之和. 请将结果的数据类型定义为double类型. 输入 无 输出 小数点后保留6位小数,末尾输出换行. 样例输入 Copy 无 样例输出 Copy 32.660261 #include <stdio.h> #include <stdlib.h> int main() { double i=1.0,j=2.0,num,sum=2; int sqe; for(sqe=2;sqe&l
[51nod 1822]序列求和
\(k\leq 200000\) 考虑转化成枚举 \(k\) 的形式 我们错位相减! \[A_k=\sum_{i=1}^N i^K\times R^i \\ RA_k=\sum_{i=2}^{N+1} (i-1)^KR^i \\ (R-1)A_k=N^kR^{N+1}+\sum_{i=1}^{N}[(i-1)^k-i^k]R^i \] 二项式展开! \[(R-1)A_k=N^kR^{N+1}+\sum_{i=1}^{N}[\sum_{j=0}^k(-1)^{k-j}i^{j}-i^k]R^i \
51nod1228 序列求和(自然数幂和)
与UVA766 Sum of powers类似,见http://www.cnblogs.com/IMGavin/p/5948824.html 由于结果对MOD取模,使用逆元 #include<cstdio> #include<iostream> #include<cstdlib> #include<cstring> #include<string> #include<algorithm> #include<map> #in
51nod 1228 序列求和 ( 1^k+2^k+3^k+...+n^k )
C为组合数,B为伯努利数 具体推到过程略 参考博客:http://blog.csdn.net/acdreamers/article/details/38929067# (我的式子和博客中的不一样,不过思想是一样的) 具体见代码: + ; + ; LL C[maxn][maxn]; LL inv[maxn]; LL B[maxn]; LL n, k; void init() { scanf("%lld%lld", &n, &k); } void getC() { C[][
蓝桥杯 C语言 入门训练 序列求和
问题描述 求1+2+3+...+n的值. 输入格式 输入包括一个整数n. 输出格式 输出一行,包括一个整数,表示1+2+3+...+n的值. 样例输入 4 样例输出 10 样例输入 100 说明:有一些试题会给出多组样例输入输出以帮助你更好的做题. 一般在提交之前所有这些样例都需要测试通过才行,但这不代表这几组样例数据都正确了你的程序就是完全正确的,潜在的错误可能仍然导致你的得分较低. 样例输出 5050 数据规模与约定 1 <= n <= 1,000,000,000. 说明:请注意这里的数据
热门专题
vs2010运行程序无法打开文件gl/glaux.h
lu分解法解线性方程组
css 图片文字上下对齐
理解逐次逼近寄存器型ADC
layui.formSelects 定义为全局变量
阿里云 二级域名 指定端口
history.back会造成页面刷新吗
oc block 当做递归参数
自动化测试百度搜索出现百度安全
git 本地仓库 打开历史版本
python的tecplot
python win32com 修改word图
vue父组件传递字符串或者组件给子组件
深入理解计算机系统第十章答案
获取php文件里面的内容
nodejs 实现一个get request
怎么测试Ajax路径
opencv 创建不同掩膜
opencv获得xyz的位置和旋转角
软件工程时序图在哪个阶段