首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Bresenham画圆算法
2024-09-02
Bresenham直线算法与画圆算法
在我们内部开发使用的一个工具中,我们需要几乎从 0 开始实现一个高效的二维图像渲染引擎.比较幸运的是,我们只需要画直线.圆以及矩形,其中比较复杂的是画直线和圆.画直线和圆已经有非常多的成熟的算法了,我们用的是Bresenham的算法. 计算机是如何画直线的?简单来说,如下图所示,真实的直线是连续的,但我们的计算机显示的精度有限,不可能真正显示连续的直线,于是我们用一系列离散化后的点(像素)来近似表现这条直线. (上图来自于互联网络,<计算机图形学的概念与方法>柳朝阳,郑州大学数学系) 接下来的
中点Bresenham画圆
这里不仔细讲原理,只是把我写的算法发出来,跟大家分享下,如果有错误的话,还请大家告诉我,如果写的不好,也请指出来,一起讨论进步. 算法步骤: (1) 输入圆的半径R. (2) 计算初始值d = 1 - R, x = 0; y = R. (3) 绘制点(x, y), 及其在八分圆中的另外7个对称点. (4) 判断d的符号,若d < 0, 则先将d更新为d+2*x+3,再将(x,y)更新为(x+1, y),否则将d更新为d+2*(x - y) + 5,再将(x, y)更新为(x+1, y-1).
Bresenham画线算法
[Bresenham画线算法] Bresenham是一种光栅化算法.不仅可以用于画线,也可以用用画圆及其它曲线. 通过lower与upper的差,可以知道哪一个点更接近线段: 参考:<计算机图形学>3.5.3 Bresenham画线算法
Bresenham画椭圆算法
这里不仔细讲原理,只是把我写的算法发出来,跟大家分享下,如果有错误的话,还请大家告诉我,如果写的不好,也请指出来,一起讨论进步. 算法步骤: (1) 输入椭圆的长半轴a和短半轴b. (2) 计算初始值d = b*b + a * a * (-b + 0.25), x = 0, y = b. (3) 绘制点 (x, y)及其在四分象限上的另外3个对称点. (4) 判断d的符号.若d <= 0,则先将d更新为d + b * b * (2 * x + 3),再将 (x, y)更新为(x+1, y):否
中点Brehensam画圆算法
#include<stdio.h> #include<stdlib.h> #include<graphics.h> #include<math.h> void MidBrehansemCircle(int x, int y, int radius); int main() { int gdriver = DETECT, gmove; int x, y, radius; printf("Please input circle corner:\n&qu
《图形学》实验六:中点Bresenham算法画圆
开发环境: VC++6.0,OpenGL 实验内容: 使用中点Bresenham算法画圆. 实验结果: 代码: #include <gl/glut.h> #define WIDTH 500 #define HEIGHT 500 #define OFFSET 15 #define R 8 void Init() //其它初始化 { glClearColor(1.0f,1.0f,1.0f,1.0f); //设置背景颜色,完全不透明 glColor3f(1.0f,0.0f,0.0f); //设置画笔
基于Bresenham算法画圆
bresenham算法画圆思想与上篇 bresenham算法画线段 思想是一致的 画圆x^2+y^2=R^2 将他分为8个部分,如上图 1. 只要画出1中1/8圆的圆周,剩下的就可以通过对称关系画出这个圆 X变化从0->R 那为什么不采用从-R->R呢, Y=+-sqrt(R^2-x^2); dy/dx=-x/(sqrt(R^2-x^2)) =-x/y 所以采用从-R到R,每次横坐标增1,计算量大,而且在(x=+-R,y=0)处,x的很小变化就引起了y的很大变化. 所以不是采用x从-R---&
计算机图形学(二)输出图元_6_OpenGL曲线函数_2_中点画圆算法
中点画圆算法 如同光栅画线算法,我们在每一个步中以单位间隔取样并确定离指定圆近期的像素位置.对于给定半径r和屏幕中心(xc,yc),能够先使用算法计算圆心在坐标原点(0, 0)的圆的像素位置,然后通过将xc加到x且yc加到y.从而把计算出的每一个位置(x,y)移动到其适当的屏幕位置.在第一象限中,圆弧段从x = 0到x = y,曲线的斜率从0变化到-1.0. 因此,能够在该八分圆上的正x方向取单位步长.并使用决策參数来确定每一步两个可能的y位置中,哪一个更接近于圆的位置.然后,其它
Bresenham画直线,任意斜率
function DrawLineBresenham(x1,y1,x2,y2) %sort by x,sure x1<x2. if x1>x2 tmp=x1; x1=x2; x2=tmp; tmp=y1; y1=y2; y2=tmp; end dx=x2-x1; dy=y2-y1; twoDy=2*dy; twoDy_Dx=2*(dy-dx); twoDx=2*dx; twoDx_Dy=2*(dx-dy); twoDxPlusDy=2*(dx+dy); %branch 1: k>0 ?
两种画线算法(DDA&Bersenham)
DDA(digital differential analyzer) 由直线的斜截式方程引入 对于正斜率的线段,如果斜率<=1,则以单位x间隔(δx=1)取样,并逐个计算每一个y值 Yk+1 = Yk + m (m为由初始点确定的斜率) 对于斜率>1的线段 Xk+1 = Xk + 1/m (m为由初始点确定的斜率) 起始端点在于右侧时 "+" -> "-" #include "stdlib.h" #include &qu
计算机图形学DDA画线法+中点画线法+Bresenham画线法
#include <cstdio> #include <cstring> #include <conio.h> #include <graphics.h> void line1(){ line(100, 100, 200, 400); line(100, 400, 200, 100); line(0, 200, 300, 300); line(0, 300, 300, 200); } void lineDDA(int x0, int y0, int x1,
【转】【OPenGL】OPenGL 画图板-- 中点算法画圆
为了能以任意点为圆心画圆,我们可以把圆心先设为视点(相当于于将其平移到坐标原点),然后通过中点法扫描转换后,再恢复原来的视点(相当于将圆心平移回原来的位置). 圆心位于原点的圆有四条对称轴x=0,y=0,x=y和x=-y,从而圆上一点(x,y),可得到其关于四条对称轴的七个对称点,这称为八对称性,下面的函数就用来显示(x,y)及其七个对称点. void CirclePoints(int x,int y,long color,CDC *pDC) { //第1象限 pDC->SetPixel(x,y
Bresenham快速画直线算法
现在的计算机的图像的都是用像素表示的,无论是点.直线.圆或其他图形最终都会以点的形式显示.人们看到屏幕的直线只不过是模拟出来的,人眼不能分辨出来而已.那么计算机是如何画直线的呢,其实有比较多的算法,这里讲的是Bresenham的算法,是光栅化的画直线算法.直线光栅化是指用像素点来模拟直线,比如下图用蓝色的像素点来模拟红色的直线. 给定两个点起点P1(x1, y1), P2(x2, y2),如何画它们直连的直线呢,即是如何得到上图所示的蓝色的点.假设直线的斜率0<k>0,直线在第一象限,Bres
WebGIS中基于AGS的画圆查询简析以及通过Polygon来构造圆的算法
文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/. 1.背景 某个项目需求中需要在前端进行画圆查询,将圆范围上的多边形要素在前端进行展示.因为此项目的环境是AGS环境,考虑使用AGS的I查询来完成. 2.I查询的相关参数介绍 I查询中主要涉及到如下几个参数:geometry.geometryType.layerDefs.layers.tolerance.mapExtent.imageDisplay等. 2.1理解相对简
[计算机图形学] 基于C#窗口的Bresenham直线扫描算法、种子填充法、扫描线填充法模拟软件设计(二)
上一节链接:http://www.cnblogs.com/zjutlitao/p/4116783.html 前言: 在上一节中我们已经大致介绍了该软件的是什么.可以干什么以及界面的大致样子.此外还详细地介绍了Bresenham直线扫描算法的核心思想及实现,并在最终在2-1小节引出工程中对于该算法具体的实现.本节将着手讲解多边形填充算法. 二.承接上篇 2-1.多边形扫描转换 把顶点表示转换为点阵表示:①从多边形的给定边界出发,求出其内部的各个像素:②并给帧缓冲器中各个对应元素设置相应灰度或颜色
(转载)找圆算法((HoughCircles)总结与优化
Opencv内部提供了一个基于Hough变换理论的找圆算法,HoughCircle与一般的拟合圆算法比起来,各有优势:优势:HoughCircle对噪声点不怎么敏感,并且可以在同一个图中找出多个圆:反观拟合圆算法,单纯的拟合结果容易受噪声点的影响,且不支持一个输入中找多个圆缺点:原始的Hough变换找圆,计算量很大,而且如果对查找圆的半径不加控制,不但运算量巨大,而且精度也不足,在输入噪声点不多的情况下,找圆效果远不如拟合找圆:为了提高找圆精度,相比拟合法,需要提供更多的参数加以控制,参数要
转载-找圆算法((HoughCircles)总结与优化-霍夫变换
原文链接: http://www.opencv.org.cn/forum.php?mod=viewthread&tid=34096 找圆算法((HoughCircles)总结与优化 Opencv内部提供了一个基于Hough变换理论的找圆算法,HoughCircle与一般的拟合圆算法比起来,各有优势:优势:HoughCircle对噪声点不怎么敏感,并且可以在同一个图中找出多个圆:反观拟合圆算法,单纯的拟合结果容易受噪声点的影响,且不支持一个输入中找多个圆 缺点:原始的Hough变换找圆,计算量
找圆算法((HoughCircles)总结与优化
http://www.opencv.org.cn/forum.php?mod=viewthread&tid=34096 Opencv内部提供了一个基于Hough变换理论的找圆算法,HoughCircle与一般的拟合圆算法比起来,各有优势:优势:HoughCircle对噪声点不怎么敏感,并且可以在同一个图中找出多个圆:反观拟合圆算法,单纯的拟合结果容易受噪声点的影响,且不支持一个输入中找多个圆缺点:原始的Hough变换找圆,计算量很大,而且如果对查找圆的半径不加控制,不但运算量巨大,而且精度也不
matlab练习程序(Bresenham画线)
Bresenham画线算图形学中最基础的知识了,可惜我并没有选修过图形学,所有还是有必要熟悉一下. 上一篇用到的画线函数应该算是数值微分法,也是我最常用的一种方法,不过这种方法似乎并不是很好. 这里的画线方法比上一种方法好. 算法原理如下: 过各行各列象素中心构造一组虚拟网格线.按直线从起点到终点的顺序计算直线与各垂直网格线的交点,然后确定该列象素中与此交点最近的象素. 该算法的巧妙之处在于采用增量计算,使得对于每一列,只要检查一个误差项的符号,就可以确定该列的所求象素. 更细节的原理参考这里.
Bing必应地图中国API - 在地图上画圆
Bing必应地图中国API - 在地图上画圆 2011-05-24 14:49:37| 分类: Bing&Google|字号 订阅 <变形金刚2>上映4日国内票房过亿,基本上我只能等盗版流出下载观看了.很多时候愿望很小,却不容易实现.比如我一直想写一篇博客,介绍一下在地图上画圆.这个想法来源于不止一个客户问起怎么在必应地图上实现区域搜索,比如搜索一个圆.长方形.多边形内的兴趣点. 于是衍生出来一个问题,微软必应地图为什么不提供更丰富的地图功能,比如测量两点之间的距离,画各种形
热门专题
Autofac批量注入FluentValidation
Python 验证码 jsp 保存
大型应用web前端技术栈
load_elf_binary加载动态库
springcloud 相册队列被同一服务消费
arm dsp库fir
kettle获取sql语句出错
fortran 二维指针
Linux下使用makefile同时运行三个c文件
nuxt 使用qrcodejs2
sqlldr 导入数据多个空格
Linux下64位汇编
flink 双流join 状态过大
spring tmp 目录自动创建
hutool获取响应cookie
redis 分布式锁工具类
sql group by having最大值
radio按钮的大小
tpyboard数码管电子钟
验证ssh登录是否成功