Receptive field 可中译为“感受野”,是卷积神经网络中非常重要的概念之一. 我个人最早看到这个词的描述是在 2012 年 Krizhevsky 的 paper 中就有提到过,当时是各种不明白的,事实上各种网络教学课程也都并没有仔细的讲清楚“感受野”是怎么一回事,有什么用等等.直到我某天看了 UiO 的博士生 Dang Ha The Hien写了一篇非常流传甚广的博文:A guide to receptive field arithmetic for Convolutional Ne
原文链接:关于感受野的总结 论文链接:Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 一.感受野 感受野被定义为卷积神经网络特征所能看到输入图像的区域,换句话说特征输出受感受野区域内的像素点的影响.下图展示了一个在输出层达到了7*7感受野的例子: 感受野计算公式为:, 如上例第一个隐层,, 如果存在空洞卷积,公式变为. 感受野计算的问题 上文所述的是理论感受野,而特征的有效感受野(
本文翻译自A guide to receptive field arithmetic for Convolutional Neural Networks(可能需要FQ才能访问),方便自己学习和参考.若有侵权,还请告知. 感受野(receptive field)可能是卷积神经网络(Convolutional Neural Network,CNNs)中最重要的概念之一,值得我们关注和学习.当前流行的物体识别方法的架构大都围绕感受野的设计.但是,当前并没有关于CNN感受野计算和可视化的完整指南.本教程
无痛理解CNN中的感受野receptive field CNN中感受野的计算 从直观上讲,感受野就是视觉感受区域的大小.在卷积神经网络中,感受野的定义是决定某一层输出结果中一个元素所对应的输入层的区域大小 感受野计算时有下面的几个情况需要说明: a)第一层卷积层的输出特征图像素的感受野的大小等于滤波器的大小: b)深层卷积层的感受野大小和它之前所有层的滤波器大小和步长有关系: c)计算感受野大小时,忽略了图像边缘的影响,即不考虑padding的大小. 至于如何计算感受野,我的建议是top to
1. 阅读论文:Understanding the Effective Receptive Field in Deep Convolutional Neural Networks 理解感受野 定义:receptive field, or field of view (感受野) A unit in convolutional networks only depends on a region of the input. This region in the input is the recepti
Rupesh Kumar Srivastava (邮箱:RUPESH@IDSIA.CH)Klaus Greff (邮箱:KLAUS@IDSIA.CH)J¨ urgen Schmidhuber (邮箱:JUERGEN@IDSIA.CH)The Swiss AI Lab IDSIA(瑞士AI实验室IDSIA)Istituto Dalle Molle di Studi sull’Intelligenza Artificiale(IDSIA:institute of studies on intellig