语义分割:基于openCV和深度学习(一) Semantic segmentation with OpenCV and deep learning 介绍如何使用OpenCV.深度学习和ENet架构执行语义分段.阅读完今天的文章后,能够使用OpenCV对图像和视频应用语义分割.深度学习有助于提高计算机视觉的前所未有的准确性,包括图像分类.目标检测,现在甚至分割. 传统的分割方法是将图像分割为若干部分(标准化切割.图形切割.抓取切割.超像素等):然而,算法并没有真正理解这些部分所代表的内容. 另一方
YOLOV4各个创新功能模块技术分析(二) 四.数据增强相关-GridMask Data Augmentation 论文名称:GridMask Data Augmentation 论文地址:https://arxiv.org/abs/2001.04086v2 论文摘要 本文提出了一种新的数据增强方法GridMask.它利用信息去除来实现各种计算机视觉任务的最新结果.分析了信息丢弃的需求.在此基础上,指出了现有信息丢弃算法的局限性,提出了一种简单有效的结构化方法.它基于输入图像区域的删除.大量实验