首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
cuda 使用远程gpu
2024-11-04
[转]如何远程连接运行OpenGL/Cuda 等GPU程序
发现一篇神文,解决了困扰许久的远程桌面OpenGL/GPU 等问题... 原地址在这:http://www.tanglei.name/how-to-run-gpu-programs-using-remote-connection/ 有时候往往需要通过远程桌面连接进行coding工作,像一般的比如web之类的可能不需要GPU等支持的coding工作直接用windows远程桌面连接编码然后debug即可,而一些需要依靠显卡支持的工作如渲染.cuda等GPU操作时,往往远程桌面连接debug会失败.因
CUDA刷新:GPU计算生态系统
CUDA刷新:GPU计算生态系统 CUDA Refresher: The GPU Computing Ecosystem 这是CUDA Refresher系列的第三篇文章,其目标是刷新CUDA中的关键概念.工具和优化,以供初级或中级开发人员使用. 易于编程和性能的巨大飞跃是CUDA平台被广泛采用的关键原因之一.CUDA平台成功的第二大原因是拥有广泛而丰富的生态系统. 与任何新平台一样,CUDA的成功依赖于CUDA生态系统可用的工具.库.应用程序和合作伙伴.任何新的计算平台都需要开发人员将应用程序
【并行计算-CUDA开发】GPU 的硬体架构
GPU 的硬体架构 这里我们会简单介绍,NVIDIA 目前支援CUDA 的GPU,其在执行CUDA 程式的部份(基本上就是其shader 单元)的架构.这里的资料是综合NVIDIA 所公布的资讯,以及NVIDIA 在各个研讨会.学校课程等所提供的资料,因此有可能会有不正确的地方.主要的资料来源包括NVIDIA 的CUDA Programming Guide 1.1.NVIDIA 在Supercomputing '07 介绍CUDA 的session,以及UIUC 的CUDA 课程. GPU
ubuntu 15 安装cuda,开启GPU加速
1 首先要开启GPU加速就要安装cuda.安装cuda,首先要安装英伟达的驱动.ubuntu有自带的开源驱动,首先要禁用nouveau.这儿要注意,虚拟机不能安装ubuntu驱动.VMWare下显卡只是模拟出的一块显卡,如果你安装cuda,会卡在ubuntu图形界面无法登陆系统.或者最终安装了cuda也会检测不到显卡设备,所以首先我们需要装双系统. 2 win10下安装ubuntu.win10,win8,是使用uefi引导的.不同于win7等老版本.所以不可以使用EasyBCD. 首先我们对C盘
【CUDA学习】GPU硬件结构
GPU的硬件结构,也不是具体的硬件结构,就是与CUDA相关的几个概念:thread,block,grid,warp,sp,sm. sp: 最基本的处理单元,streaming processor 最后具体的指令和任务都是在sp上处理的.GPU进行并行计算,也就是很多个sp同时做处理 sm:多个sp加上其他的一些资源组成一个sm, streaming multiprocessor. 其他资源也就是存储资源,共享内存,寄储器等. warp:GPU执行程序时的调度单位,目前cuda的warp的大小
Windows7 64位机上,OpenCV中配置CUDA,实现GPU操作步骤
原文地址:http://blog.csdn.net/haorenka2010/article/details/24385955 按语:首先感谢http://blog.csdn.net/fengbingchun/article/details/9831837这个博主的原创方法,在这个基础上编译之后发现了很多问题,所以进行了改正,有了以下方法: 重新编译opencv 1. 查看本机配置,查看显卡类型是否支持NVIDIA GPU,本机显卡为NVIDIA GeForce GT630: 2. 从http
【并行计算-CUDA开发】GPU并行编程方法
转载自:http://blog.sina.com.cn/s/blog_a43b3cf2010157ph.html 编写利用GPU加速的并行程序有多种方法,归纳起来有三种: 1. 利用现有的GPU函数库. Nvidia 的CUDA工具箱中提高了免费的GPU加速的快速傅里叶变换(FFT).基本线性代数子程序(BLAST).图像与视频处理库(NPP).用户只要把源代码中CPU版本的快速傅里叶变换.快速傅里叶变换和图像与视频处理库替换成相应的GPU版,即可得到性能加速.除了Nvidia提供的函
【计算机视觉】【并行计算与CUDA开发】GPU硬解码---CUVID
问题描述:项目中,需要对高清监控视频分析处理,经测试,其解码过程所占CPU资源较多,导致整个系统处理效率不高,解码成为系统的瓶颈. 解决思路: 利用GPU解码高清视频,降低解码所占用CPU资源,加速解码过程. 一.OpenCV中的硬解码 OpenCV2.4.6中,已实现利用GPU进行读取视频,由cv::gpu::VideoReader_GPU完成,其示例程序如下. 1 int main(int argc, const char* argv[]) 2 { 3 if (argc != 2) 4 re
win10家庭中文版CUDA+CUDNN+显卡GPU使用tensorflow-gpu训练模型安装过程(精华帖汇总+重新修改多次复现)
查看安装包 pip list 本帖提供操作过程,具体操作网上有好多了,不赘述.红色字体为后来复现出现的问题以及批注 题外话: (1)python 的环境尽量保持干净,尽量单一,否则容易把自己搞晕,不知道自己后来项目开发的依赖包到底安装在哪里了. (2)无论是安装python2 还是python3,还是anaconda,一定要清楚自己的环境,不要一连装了好几个版本,会崩的. (3)查看环境变量,python的环境变量是否都被配置,如何配置,在安装python时就已经涉及到了,最后采用anacond
【计算机视觉】【并行计算与CUDA开发】GPU硬编码
一.OpenCV中的硬编码 OpenCV2.4.6中,已实现利用GPU进行写视频,编码过程由cv::gpu::VideoWriter_GPU完成,其示例程序如下. 1 int main(int argc, const char* argv[]) 2 { 3 if (argc != 2) 4 { 5 std::cerr << "Usage : video_writer <input video file>" << std::endl; 6 return
【计算机视觉】【并行计算与CUDA开发】GPU硬解码---DXVA
前面介绍利用NVIDIA公司提供的CUVID库进行视频硬解码,下面将介绍利用DXVA进行硬解码. 一.DXVA介绍 DXVA是微软公司专门定制的视频加速规范,是一种接口规范.DXVA规范制定硬件加速解码可分四级:VLD,控制BitStream:IDCT,反余弦变换:Mocomp,运动补偿,Pixel Prediction:PostProc,显示后处理.其中,VLD加速等级最高,所以其包含IDCT.MoCoopm和PostProc:IDCT加速次之,包含MoCoopm和PostProc:最后MoC
OpenCL与CUDA,CPU与GPU
OpenCL OpenCL(全称Open Computing Language,开放运算语言)是第一个面向异构系统通用目的并行编程的开放式.免费标准,也是一个统一的编程环境,便于软件开发人员为高性能计算服务器.桌面计算系统.手持设备编写高效轻便的代码,而且广泛适用于多核心处理器(CPU).图形处理器(GPU).Cell类型架构以及数字信号处理器(DSP)等其他并行处理器,在游戏.娱乐.科研.医疗等各种领域都有广阔的发展前景. OpenCL是一个为异构平台编写程序的框架,此异构平台可由CPU,GP
GPU 、APU、CUDA、TPU、FPGA介绍
购买显卡主要关注:显存.带宽和浮点运算数量 GPU :图形处理器(英语:Graphics Processing Unit,缩写:GPU),又称显示核心.视觉处理器.显示芯片,是一种专门在个人电脑.工作站.游戏机和一些移动设备(如平板电脑.智能手机等)上图像运算工作的微处理器. 用途是将计算机系统所需要的显示信息进行转换驱动,并向显示器提供行扫描信号,控制显示器的正确显示,是连接显示器和个人电脑主板的重要元件,也是“人机对话”的重要设备之一.显卡作为电脑主机里的一个重要组成部分,承担输出显示图
计算机组成原理 — GPU 图形处理器
目录 文章目录 目录 显卡 GPU GPU 与深度学习 GPU 与 CPU 体系结构的区别 GPU 显存与 CPU 主存的区别 GPU 与 CPU 之间的数据交互方式 GPU 的体系结构 GPU 的工作原理 GPU 的关键参数 CUDA 编程模型 CUDA 的架构 CUDA 的核心概念 CUDA 的工作原理 云主机显卡的实现方式 虚拟显卡 物理显卡直通 物理显卡虚拟化 KVM 虚拟机通过 PCI Pass-through 使用 NVIDIA 显卡 显卡 显卡(Video card.Display
GPU虚拟化技术详解
GPU虚拟化技术详解 GPU英文名称为Graphic Processing Unit,GPU中文全称为计算机图形处理器,1999年由NVIDIA公司提出. 一.GPU概述 GPU这一概念也是相对于计算机系统中的CPU而言的,由于人们对图形的需求越来越大,尤其是在家用系统和游戏发烧友,而传统的CPU不能满足现状,因此需要提供一个专门处理图形的核心处理器. GPU作为硬件显卡的"心脏",地位等同于CPU在计算机系统中的作用.同时GPU也可以用来作为区分2D硬件显卡和3D硬件显卡的重要依据.
手把手教你搭建深度学习平台——避坑安装theano+CUDA
python有多混乱我就不多说了.这个混论不仅是指整个python市场混乱,更混乱的还有python的各种附加依赖包.为了一劳永逸解决python的各种依赖包对深度学习造成的影响,本文中采用python的发行版Anaconda. Step1 安装Anaconda 这里不建议使用python3.4以后的Anaconda版本,因为太新的版本(python3.5)不支持python/matlab混合编程.所以为了以后方便,建议使用python2.7的Anaconda版本.Anaconda安装完成后,n
计算机系列:CUDA 深入研究
Copyright © 1900-2016, NORYES, All Rights Reserved. http://www.cnblogs.com/noryes/ 欢迎转载,请保留此版权声明. ----------------------------------------------------------------------------------------- 转载自http://blog.csdn.net/abcjennifer/article/details/42436727 本
caffe安装:ubuntu16.04 + opencv2.4 + python 2.7+ CUDA 8.0 RC + CuDNN 5.0
官方教程:http://caffe.berkeleyvision.org/install_apt.html 主要参考教程: https://github.com/BVLC/caffe/wiki/Ubuntu-16.04-or-15.10-Installation-Guide 其他参考:http://blog.csdn.net/hjimce/article/details/51999566 http://www.52nlp.cn/%E6%B7%B1%E5%BA%A6%E5%AD%A6%E4%B9%
GPU 编程入门到精通(五)之 GPU 程序优化进阶
博主因为工作其中的须要,開始学习 GPU 上面的编程,主要涉及到的是基于 GPU 的深度学习方面的知识.鉴于之前没有接触过 GPU 编程.因此在这里特地学习一下 GPU 上面的编程. 有志同道合的小伙伴,欢迎一起交流和学习.我的邮箱: caijinping220@gmail.com .使用的是自己的老古董笔记本上面的 Geforce 103m 显卡,尽管显卡相对于如今主流的系列已经很的弱,可是对于学习来说.还是能够用的.本系列博文也遵从由简单到复杂,记录自己学习的过程. 0. 文件夹 GPU 编
cuda编程学习1——hello world!
将c程序最简单的hello world用cuda编写在GPU上执行,以下为代码: #include<iostream>using namespace std;__global__ void kernel(void)//__global__:cpu调用GPU执行{}int main(void){ kernel<<<1,1>>>();//启动1block 1thread cout<<"hello world!"<<en
Mac下CUDA开启及Tensorflow-gpu安装
本文由@ray 出品,转载请注明出处. 文章链接:http://www.cnblogs.com/wolfray/p/8040694.html 在之前的文章中,笔者介绍了在Mac下安装Tensorflow及开发环境搭建.但是感觉用CPU跑机器学习还是太慢了,所以便研究研究如何使用GPU来跑. 1.运行环境 软件环境: macOS Sierra 10.12.6 Xcode 8.2.1 Python 2.7 Homebrew GPU Driver: WebDriver-378.05.05.25f03
热门专题
hibernate注解 禁止序列化
pycharm配置license server不通过
风变编程笔记百度网盘
html人脸识别验证
R语言plot画半圆
matlab怎么修改数组
Vs怎样复制资源视图
笔记本电脑组织的激活服务器在哪
TD时序差分需要的G(t)如何求
nginx 反向代理后页面加载js找不到
nuxt ssr是什么 导致页面create调用两边
php中的$ordergoods->add($data)
二级域名http跳转https
com.apple.installer 重新安装
cadence器件对齐
server2008支持的cpu
Java启动监控脚本
c queue 清空
c# textbox 自适应
oracle 时间相减 转成秒