简单使用DESeq2/EdgeR做差异分析 Posted: 五月 07, 2017 Under: Transcriptomics By Kai no Comments DESeq2和EdgeR都可用于做基因差异表达分析,主要也是用于RNA-Seq数据,同样也可以处理类似的ChIP-Seq,shRNA以及质谱数据. 这两个都属于R包,其相同点在于都是对count data数据进行处理,都是基于负二项分布模型.因此会发现,用两者处理同一组数据,最后在相同阈值下筛选出的大部分基因都是一样的,但是
使用limma.Glimma和edgeR,RNA-seq数据分析易如反掌 Charity Law1, Monther Alhamdoosh2, Shian Su3, Xueyi Dong3, Luyi Tian1, Gordon K. Smyth4 and Matthew E. Ritchie5 1The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville, VIC 3052, Melbo
1)简介 edgeR作用对象是count文件,rows 代表基因,行代表文库,count代表的是比对到每个基因的reads数目.它主要关注的是差异表达分析,而不是定量基因表达水平. edgeR works on a table of integer read counts, with rows corresponding to genes and columns to independent libraries. The counts represent the total number of
文献:Sahraeian S M E, Mohiyuddin M, Sebra R, et al. Gaining comprehensive biological insight into the transcriptome by performing a broad-spectrum RNA-seq analysis[J]. Nature Communications, 2017, 8(1):59. 这是一篇在NC上发表的使用RNAseq工具对比的一篇文献,解读这篇文献对我们使用RNAseq
做差异表达的软件DEseq和edgeR所需要的数据格式必须是原始counts,经过normalization和log2后的数据都不适合,所以对于做差异表达计算的童鞋可以使用ExperimentHub下载TCGA的原始数据. GEO地址:http://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE62944安装:首先安装环境要求BioC 3.4## In R-3.3library(BiocInstaller)useDevel()biocValid()
[怪毛匠子-整理] awesome-single-cell List of software packages (and the people developing these methods) for single-cell data analysis, including RNA-seq, ATAC-seq, etc. Contributions welcome... Software packages RNA-seq anchor - [Python] - ⚓ Find bimodal,
NGS ngs(hisat,stringtie,ballgown) #HISAT (hierarchical indexing for spliced alignment of transcripts) is a highly efficient system for aligning reads from RNA sequencing experiments. HISAT uses an indexing scheme based on the Burrows-Wheeler transfor
Directional RNA-seq data -which parameters to choose? REF: https://chipster.csc.fi/manual/library-type-summary.html Directional RNA-seq methods are gaining popularity. Several protocols and products are available for the library preparation step, and
在做基因表达分析时必然会要做差异分析(DE) DE的方法主要有两种: Fold change t-test fold change的意思是样本质检表达量的差异倍数,log2 fold change的意思是取log2,这样可以可以让差异特别大的和差异比较小的数值缩小之间的差距. Let's say there are 50 read counts in control and 100 read counts in treatment for gene A. This means gene A is