首页
Python
Java
IOS
Andorid
NodeJS
JavaScript
HTML5
Eigen Tensor 运算
2024-09-01
从零开始编写深度学习库(五)Eigen Tensor学习笔记2.0
1.extract_image_patches函数的使用: 假设Eigen::Tensor形状为(3,8,8,9),现在要对第二维.第三维根据size大小为(2,2),stride=(2,2),那么如果tensor类型是rowmajor类型,那么经过extract_image_patches后的数据就是(3,4*4,2,2,9)的5维数组,如果tensor类型是colmajor类型,那么得到的数据就是(3,2,2,4*4,9)的五维数组. Eigen::array<int, 2> reduct
CANN算子:利用迭代器高效实现Tensor数据切割分块处理
摘要:本文以Diagonal算子为例,介绍并详细讲解如何利用迭代器对n维Tensor进行基于位置坐标的大批量数据读取工作. 本文分享自华为云社区<CANN算子:利用迭代器高效实现Tensor数据切割分块处理>,作者: CatherineWang . 任务场景及目标 在CANN aicpu算子开发实现中,经常需要对n维Tensor进行切片(slice).切块(dice).转置(transpose).交换指定维度数据(shuffle)等操作.上述操作实质上是按照指定规律依次进行数据读取,并将读取到
Tensorflow数学运算
一.Tensor 之间的运算规则 1) 相同大小 Tensor 之间的任何算术运算都会将运算应用到元素级 2) 不同大小 Tensor(要求dimension 0 必须相同) 之间的运算叫做广播(broadcasting) 3) Tensor 与 Scalar(0维 tensor) 间的算术运算会将那个标量值传播到各个元素 4) Note:TensorFLow 在进行数学运算时,一定要求各个 Tensor 数据类型一致 二.算术操作(+,-,*,/,Mod) (1)tensor-tensor操作
Pytorch | 详解Pytorch科学计算包——Tensor
本文始发于个人公众号:TechFlow,原创不易,求个关注 今天是Pytorch专题的第二篇,我们继续来了解一下Pytorch中Tensor的用法. 上一篇文章当中我们简单介绍了一下如何创建一个Tensor,今天我们继续深入Tensor的其他用法. tensor操作 size()和shape 我们可以用size()函数或者直接调用tensor当中的shape属性获取一个tensor的大小,这两者是等价的,一般情况下我们用前者多一些. view 我们可以通过view改变一个tensor的shape
Tensor Core技术解析(上)
Tensor Core技术解析(上) NVIDIA在SIGGRAPH 2018上正式发布了新一代GPU架构--Turing(图灵),黄仁勋称Turing架构是自2006年CUDA GPU发明以来最大的飞跃.Turing架构的两大重要特性便是集成了用于光线追踪的RT Core以及用于AI计算的Tensor Core,使其成为了全球首款支持实时光线追踪的GPU. 不过说到AI计算,NVIDIA GPU成为最好的加速器早已是公认的事实,但将Tensor Core印上GPU名片的并不是这次的Turing
TensorFlow架构学习
0 - TensorFlow 基于数据流图,节点表示某种抽象计算,边表示节点之间联系的张量. Tensorflow结构灵活,能够支持各种网络模型,有良好的通用性和扩展性. 1 - 系统概述 TensorFlow以$C\ API$为界限,分为前端系统(提供编程模型,负责构造计算图)以及后端系统(提供运行时环境,负责执行计算图),如下图. 1.1 - 模块Client Client是一个支持多语言的编程环境,它提供基于计算图的编程模型,方便用户构造各种复杂的计算图,实现各种形式的模型设计和构建.Cl
TF(2): 核心概念
TF的核心是围绕Graph展开的,简而言之,就是Tensor沿着Graph传递闭包完成Flow的过程.所以在介绍Graph之前需要讲述一下符号编程.计算流图.梯度计算.控制流的概念. 张量(Tensor) 名字就是TensorFlow,直观来看,就是张量的流动.张量(tensor),即任意维度的数据,一维.二维.三维.四维等数据统称为张量.而张量的流动则是指保持计算节点不变,让数据进行流动.这样的设计是针对连接式的机器学习算法.连接式的机器学习算法可以把算法表达成一张图,张量从图中从前到后走一遍
[TF] Architecture - Computational Graphs
阅读笔记: 仅希望对底层有一定必要的感性认识,包括一些基本核心概念. Here只关注Graph相关,因为对编程有益. TF – Kernels模块部分参见:https://mp.weixin.qq.com/s/vwSlxxD5Ov0XwQCKy1oyuQ TF – Session部分,也可以在起专题总结:https://mp.weixin.qq.com/s/Bi6Rg-fEwyN4uIyRHDPhXg Tensorflow Download: https://github.com/tensorf
Tensorflow代码解析(一)
http://www.leiphone.com/news/201702/n0uj58iHaNpW9RJG.html?utm_source=tuicool&utm_medium=referral 摘要 2015年11月9日,Google发布深度学习框架TensorFlow并宣布开源,并迅速得到广泛关注,在图形分类.音频处理.推荐系统和自然语言处理等场景下都被大面积推广.TensorFlow系统更新快速,官方文档教程齐全,上手快速且简单易用,支持Python和C++接口.本文依据对Tensorflo
TensorFlow架构与设计:概述
TensorFlow是什么? TensorFlow基于数据流图,用于大规模分布式数值计算的开源框架.节点表示某种抽象的计算,边表示节点之间相互联系的张量. TensorFlow支持各种异构的平台,支持多CPU/GPU,服务器,移动设备,具有良好的跨平台的特性:TensorFlow架构灵活,能够支持各种网络模型,具有良好的通用性:此外,TensorFlow架构具有良好的可扩展性,对OP的扩展支持,Kernel特化方面表现出众. 系统概述 TensorFlow的系统结构以C API为界,将整个系统分
Pytorch1.3源码解析-第一篇
pytorch$ tree -L 1 . ├── android ├── aten ├── benchmarks ├── binaries ├── c10 ├── caffe2 ├── CITATION ├── cmake ├── CMakeLists.txt ├── CODEOWNERS ├── CONTRIBUTING.md ├── docker ├── docs ├── ios ├── LICENSE ├── Makefile ├── modules ├── mypy-files.txt
《转》从系统和代码实现角度解析TensorFlow的内部实现原理 | 深度
from https://www.leiphone.com/news/201702/n0uj58iHaNpW9RJG.html?viewType=weixin 摘要 2015年11月9日,Google发布深度学习框架TensorFlow并宣布开源,并迅速得到广泛关注,在图形分类.音频处理.推荐系统和自然语言处理等场景下都被大面积推广.TensorFlow系统更新快速,官方文档教程齐全,上手快速且简单易用,支持Python和C++接口.本文依据对Tensorflow(简称TF)白皮书[1].TF
windows环境VS2015编译TensorFlow C++程序完全攻略
本文参考和综合了多篇网络博客文章,加以自己的实践,最终终于在windows环境下,编译出可以用于C++程序调用tensorflow API的程序,并执行成功. 考虑到网络上关于这方面的资料还较少,特总结全过程如下,希望能帮助到有需要的码农朋友,文中有部分文字步骤是借鉴他人文章,引用路径在最后列出. 一.环境准备: 操作系统:windows8.1 安装visual stduio2015 安装Swigwin-3.0.12,注意其下载解压以后即可使用,本人放置路径在D:/lib/swigwin-3.0
踩坑记:Tensorflow环境搭建
自从上一篇论文投出去,之后就各种事就来了……处理那些乱七八糟的事就是让人心累,在加上师哥们毕业,能帮我的人越来越少了,而要指望你的人呢,越来越多.一想到那些用搜索引擎都搜不到资料的人,蓦地想起邓爷爷说的那句“学习计算机要从娃娃抓起……” 上来先吐槽这么几句哈,毕竟憋了快两个星期了, 正题,实验室因为实验环境需要上了台搭载1080Ti的机器,简单说几项配置:6核i7CPU,64G内存,256固态+4T机械,1080TI显卡(都说它有8G显存,但实验时发现有10G+的显存)单路,风扇散热,双系统(w
深度学习之PyTorch实战(1)——基础学习及搭建环境
最近在学习PyTorch框架,买了一本<深度学习之PyTorch实战计算机视觉>,从学习开始,小编会整理学习笔记,并博客记录,希望自己好好学完这本书,最后能熟练应用此框架. PyTorch是美国互联网巨头Facebook在深度学习框架Torch的基础上使用Python重写的一个全新的深度学习框架,它更像NumPy的替代产物,不仅继承了NumPy的众多优点,还支持GPUs计算,在计算效率上要比NumPy有更明显的优势:不仅如此,PyTorch还有许多高级功能,比如拥有丰富的API,可以快速完成深
Tensorflow[架构流程]
1. tensorflow工作流程 如官网所示: 根据整体架构或者代码功能可以分为: 图1.1 tensorflow架构 如图所示,一层C的api接口将底层的核运行时部分与顶层的多语言接口分离开. 而根据整个的工作流程,又可以分为: 图1.2 不同系统组件之间的交互 而图1.2也是tensorflow整个工作的流程,其中主要分为四个部分: 1.1. 客户端client 将整个计算过程转义成一个数据流graph 通过session,将graph传递给master执行 ps:假设我们使用的是pyth
Torch或Numpy
1.什么是NumpyNumpy系统是Python的一种开源的数值计算扩展,用python实现的科学计算包.这种工具可用来存储和处理大型矩阵,包括强大的N维数组对象Array,比较成熟的函数库等.numpy和稀疏矩阵运算包scipy配合使用更加方便. 2.用Numpy还是TorchTorch自称为神经网络界的Numpy,它能将torch产生的tensor放在GPU中加速运算,就想Numpy会把array放在CPU中加速运算.所以在神经网络中,用Torch的tensor形式更优. 但是为了减少用户的
Windows下编译TensorFlow1.3 C++ library及创建一个简单的TensorFlow C++程序
由于最近比较忙,一直到假期才有空,因此将自己学到的知识进行分享.如果有不对的地方,请指出,谢谢!目前深度学习越来越火,学习.使用tensorflow的相关工作者也越来越多.最近在研究tensorflow线下采用 python 脚本训练出模型, 利用freeze_graph工具输出.pb图文件,之后再线上生产环境windows平台上用C++代码直接调用预先训练好的模型完成预测的工作.因为目前tensorflow提供的C++的API比较少,所以参考了以上几篇已有的日志,做个总结.这里编译出Tenso
师傅领进门之6步教你跑通一个AI程序!
欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 本文由云计算基础发表于云+社区专栏 源码下载地址请点击原文查看. 初学机器学习,写篇文章mark一下,希望能为将入坑者解点惑.本文介绍一些机器学习的入门知识,从安装环境到跑通机器学习入门程序MNIST demo. 内容提纲: 环境搭建 了解Tensorflow运行机制 MNIST(手写数字识别 ) softmax性线回归 MNIST 深度卷积神经网络(CNN) tools 工具类 CPU & GPU & multi GPU 学习资
从零开始编写深度学习库(五)PoolingLayer 网络层CPU编写
记录:编写卷积层和池化层,比较需要注意的细节就是边界问题,还有另外一个就是重叠池化的情况,这两个小细节比较重要,边界问题pad在反向求导的时候,由于tensorflow是没有计算的,另外一个比较烦人的是Eigen::Tensor的rowmajor.和colmajor问题,也很烦人.为了跟tensorflow做比较,一些边界处理上的细节,需要特别注意. 一.c++.maxpooling.avgpooling #pragma once #include "config.h" #includ
热门专题
navicat修改表数据
iptables只允许指定ip访问本机的指定端口
sql每行显示累计数
vue通过追加的after追加的click事件不起作用
tkinter listbox 删除多个
python 实时计算
cymothoa后门
js调用C#桌面程序
zabbix主动式怎样监控客户端主机是否存活
dda算法画直线例题
multisim里面74LS08J在哪
DELPHI ics控件
js 中Request
pandas如何选中某个时间点的数据
root .cache文件很大
mysql 安装后别的软件运行不了怎么回事
mysql正则表达式匹配中文有问题
命令 查询 小端 大端
3.3v nmos电压指的
linux光标移到最后